The Crosstalk between MYC and Metabolism during Osteoclastogenesis
破骨细胞生成过程中 MYC 与代谢之间的串扰
基本信息
- 批准号:9236300
- 负责人:
- 金额:$ 38.72万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-09-21 至 2021-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAnimal ModelAntibodiesBiologyBone DiseasesBone ResorptionBone remodelingCell LineageCellsCellular Metabolic ProcessChIP-seqChronicClinicClinicalComplexDataDevelopmentDiagnosticDiseaseFRAP1 geneFibroblastsGenesGoalsHomeostasisImmuneIn VitroInflammationInflammatoryJointsKnowledgeLeadMalignant NeoplasmsMetabolicMetabolic PathwayMetabolismModelingMolecularMorbidity - disease rateMusMyelogenousNatureOsteoclastsOutcomeOvariectomyPatientsPhenotypePhysiologicalPlayPreventionProto-Oncogene Proteins c-mycRegulationRheumatoid ArthritisRoleSignal PathwaySignal TransductionSymptomsSynovial CellTNF geneTNFSF11 geneTestingTherapeuticTherapeutic InterventionTranslationsWorkbonebone erosionbone lossbone masscell growthcytokineexperienceimprovedin vivoinhibitor/antagonistinnovationinsightmeetingsnew therapeutic targetnovelosteoclastogenesisosteoimmunologypathologic bone resorptionprecursor cellpreventprogramssubstantia spongiosatranscriptomics
项目摘要
Rheumatoid arthritis (RA) is a chronic inflammatory disease in which immune cells and synovial fibroblasts
produce pro-inflammatory cytokines and drive an inflammatory state leading to the destruction of affected
joints. Bone erosion is a diagnostic hallmark of RA and commonly precedes the development of clinical
symptoms. Osteoclasts are myeloid lineage cells that effectively resorb bone and are directly responsible for
bone erosion and morbidity in RA. Thus, our overall hypothesis is that a better understanding of the regulation
of osteoclast differentiation and activity is likely to yield novel targets for therapies that limit pathological bone
resorption. We have found that the transcription factor MYC and MYC-dependent transcriptional programs are
activated by RANKL during early osteoclast differentiation. Although MYC has been implicated in
osteoclastogenesis, the precise mechanisms by which MYC affects the homeostasis and function of
osteoclasts remain largely unexplored. We have found that MYC is required for osteoclast differentiation and
regulates the genes that are associated with metabolism and translation during osteoclastogenesis.
Interestingly, both MYC and NFATc1 expression are significantly elevated in synovial osteoclast precursors
(OCPs) from patients with RA that have a greater potential for differentiating into osteoclasts. OCPs are
thought to reprogram their metabolism to meet the energy demands of osteoclasts, which must fuse into
multinucleated cells and synthesize molecules to resorb bone. However, the contribution of metabolic
pathways to osteoclast differentiation and the key molecule that regulates metabolic reprogramming are not
well understood. Therefore, we hypothesize that MYC plays an important role in RANKL-induced metabolic
reprogramming and MYC is one of the major contributors to generate hyperactive osteoclasts in inflammatory
bone diseases by altering specific metabolic pathways. To test our hypothesis, we proposed three specific
aims :1) to characterize the role of MYC in osteoclastogenesis in vivo, 2) to identify the molecular mechanisms
underlying the regulation and function of MYC, and 3) to investigate mechanisms by which MYC regulates
metabolic reprogramming in osteoclasts. This study will advance our understanding of the role of MYC in
osteoclast differentiation, the role of metabolic reprogramming occurring during osteoclast differentiation, and
the crosstalk between MYC and metabolic reprogramming during osteoclastogenesis. In addition, as therapies
directly targeting MYC activation are not presently available in the clinic, identification of effector molecule(s)
downstream of MYC that play important roles in osteoclast differentiation may serve as novel therapeutic
targets for the treatment and prevention of pathological bone resorption. Therefore, the overall impact of this
project is to yield insights that will not only broaden our understanding of the role of MYC in the field of
osteoimmunology, but can also be exploited to develop therapeutic interventions to suppress bone resorption
by hyperactive osteoclasts resulting from deregulated MYC expression.
类风湿性关节炎(RA)是一种慢性炎症性疾病,
产生促炎细胞因子,并驱动炎症状态,导致受影响的细胞的破坏。
接头.骨质侵蚀是RA的诊断标志,通常先于临床症状的发展。
症状破骨细胞是有效地吸收骨的髓系细胞,并且直接负责
骨侵蚀和发病率。因此,我们的总体假设是,
破骨细胞的分化和活性可能会产生新的治疗目标,限制病理性骨
再吸收我们已经发现转录因子MYC和MYC依赖性转录程序是
在破骨细胞分化早期被RANKL激活。尽管MYC被卷入了
破骨细胞生成,MYC影响体内平衡和功能的确切机制,
破骨细胞仍大量未被探索。我们发现MYC是破骨细胞分化所必需的,
在破骨细胞生成过程中调节与代谢和翻译相关的基因。
有趣的是,在滑膜破骨细胞前体中,MYC和NFATc1的表达均显著升高,
(OCP),其具有更大的分化成破骨细胞的潜力。OCP是
他们被认为重新编程他们的新陈代谢,以满足破骨细胞的能量需求,破骨细胞必须融合成
多核细胞和合成分子来吸收骨。然而,代谢的贡献
破骨细胞分化的途径和调节代谢重编程的关键分子,
很好理解。因此,我们假设MYC在RANKL诱导的代谢中起重要作用,
重新编程和MYC是炎症性关节炎中产生过度活跃的破骨细胞的主要贡献者之一。
骨疾病通过改变特定的代谢途径。为了验证我们的假设,我们提出了三个具体的
目的:1)研究MYC在体内破骨细胞生成中的作用,2)确定其分子机制
MYC的调节和功能的基础,以及3)研究MYC调节的机制
破骨细胞中的代谢重编程。这项研究将促进我们对MYC在以下方面的作用的理解:
破骨细胞分化,在破骨细胞分化过程中发生的代谢重编程的作用,
破骨细胞生成过程中MYC和代谢重编程之间的串扰。此外,作为治疗
直接靶向MYC激活的效应分子目前在临床上不可用,
在破骨细胞分化中起重要作用的MYC下游可能作为新的治疗药物
治疗和预防病理性骨吸收的靶点。因此,这一事件的总体影响
该项目的目的是产生见解,不仅将扩大我们对MYC在以下领域的作用的理解:
骨免疫学,但也可以利用开发治疗干预,以抑制骨吸收
由MYC表达失调导致的破骨细胞过度活跃。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Kyung-Hyun Park-Min其他文献
Kyung-Hyun Park-Min的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Kyung-Hyun Park-Min', 18)}}的其他基金
Osteoclast programming and reprogramming during osteoclastogenesis
破骨细胞生成过程中的破骨细胞编程和重编程
- 批准号:
10776112 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
A novel regulating pathway in osteoclastogenesis and arthritic bone resorption
破骨细胞生成和关节炎骨吸收的新调节途径
- 批准号:
10091971 - 财政年份:2018
- 资助金额:
$ 38.72万 - 项目类别:
The Crosstalk between MYC and Metabolism during Osteoclastogenesis
破骨细胞生成过程中 MYC 与代谢之间的串扰
- 批准号:
9764279 - 财政年份:2016
- 资助金额:
$ 38.72万 - 项目类别:
The Crosstalk between MYC and Metabolism during Osteoclastogenesis
破骨细胞生成过程中 MYC 与代谢之间的串扰
- 批准号:
9356304 - 财政年份:2016
- 资助金额:
$ 38.72万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8819229 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8838046 - 财政年份:2014
- 资助金额:
$ 38.72万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8300268 - 财政年份:2012
- 资助金额:
$ 38.72万 - 项目类别:
Negative Regulation of Osteoclastogenesis by Inflammatory Signals
炎症信号对破骨细胞生成的负调控
- 批准号:
8459400 - 财政年份:2012
- 资助金额:
$ 38.72万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 38.72万 - 项目类别:
Grant-in-Aid for Early-Career Scientists