Data science tools to identify robust exposure-phenotype associations for precision medicine
数据科学工具可识别精准医学中强大的暴露-表型关联
基本信息
- 批准号:10095924
- 负责人:
- 金额:$ 69.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AddressAll of Us Research ProgramBig DataBiologicalBiological FactorsBiological MarkersCardiologyCatalogsCenters for Disease Control and Prevention (U.S.)Cohort StudiesCommunitiesComplexCountryDataData ScienceData SetDemographic FactorsDepositionDiabetes MellitusDiet and NutritionDisadvantagedDiseaseEnvironmentEnvironmental ExposureEnvironmental Risk FactorEpidemiologyEtiologyExhibitsGoalsHealthHeart DiseasesHumanIncidenceLeadLibrariesLinkLiteratureMachine LearningMalignant NeoplasmsMeasurementMeasuresMeta-AnalysisMetadataMethodsModelingNational Health and Nutrition Examination SurveyNational Institute of Environmental Health SciencesObservational StudyPhenotypePollutionPopulationPopulation HeterogeneityProcessReproducibilityResearch DesignResearch PersonnelResourcesRisk FactorsRoleSample SizeSamplingTestingTimeTranslationsUnited States National Institutes of HealthVariantanalytical methodbasebiobankcohortdata resourcedeep learningdisease disparitydisease phenotypedisorder riskenvironmental health disparityfeature selectiongenetic risk factorhealth differencehealth disparityhypercholesterolemiamachine learning methodnovelphenomeprecision medicinescale uptoolvibration
项目摘要
Project Summary/Abstract
Phenotypic variability across demographically diverse populations are driven by environmental factors. The
overall goal of this proposal is to deploy data science approaches to drive discovery of associations between
exposures (E) and phenotypes (P) in demographically diverse populations. We lack data science methods to
associate, replicate, and prioritize exposure variables of the exposome (E) in phenotypes (P) and disease
incidence (D), required for the delivery of precision medicine. Observational studies are fraught with 4 unsolved
data science challenges. First, E-based studies are: (1) limited to associating a few hypothesized exposure-
phenotype pairs (E-P) at a time, leading to a fragmented literature of environmental associations. Machine
learning (ML) approaches for feature selection and prediction hold promise, however, (2) most extant E-based
cohorts contain missing data, challenging the use of ML to detect complex E-P associations, Third, (3) biases,
such as confounding and study design influence associations and hinder translation. Fourth, (4) there are few
well-powered data resources that systematically document longitudinal E-P and E-D associations across
massive precision medicine. It is a challenge to systematically associate a number of exposures in multiple
phenotypes and replicate these associations across cohorts. (Aim 1). The “vibration of effects”, or the degree
to which associations change as a function of study design (e.g., analytic method, sample size) and model
choice is a hidden bias in observational studies (Aim 2). Third, an outstanding question is the degree to which
environmental differences lead to health disparities. To address these challenges and gaps, we propose to Aim
1: develop and test machine learning methods to associate multiple environmental exposure indicators with
multiple phenotypes: EP-WAS. We hypothesize that exposures will explain a significant amount of variation in
phenotype in populations and will deposit all data and models in a novel EP-WAS Catalog. Aim 2: Quantitate
how study design influences associations between exposure biomarkers and phenotype. We will scale up,
extend, and test a method called “vibration of effects” (VoE) to measure how study criteria influences the
stability of associations (how reproducible associations are as a function of analytic choice). Aim 3. Leverage
EP-WAS and VoE to disentangle biological, demographic, and environmental influences of phenotypic
disparities in hypercholesterolemia. We will deploy EP-WAS and VoE packaged libraries in the largest cohort
study to partition phenotypic variation across demographic groups in factors for hypercholesterolemia. We will
equip the biomedical community with data science approaches for robust data-driven discovery and
interpretation of exposure-phenotype factors in observational datasets, required for the identification of
environmental health disparities. For the first time, investigators will ascertain the collective role of the
environment in heart disease at scale just in time for the All of Us program.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
ARJUN KUMAR MANRAI其他文献
ARJUN KUMAR MANRAI的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('ARJUN KUMAR MANRAI', 18)}}的其他基金
Data science tools to identify robust exposure-phenotype associations for precision medicine
数据科学工具可识别精准医学中强大的暴露-表型关联
- 批准号:
10705899 - 财政年份:2022
- 资助金额:
$ 69.78万 - 项目类别:
Precision Cardiovascular Medicine for Multi-Ethnic Populations
为多民族人群提供精准心血管医学
- 批准号:
10582991 - 财政年份:2022
- 资助金额:
$ 69.78万 - 项目类别:
Data science tools to identify robust exposure-phenotype associations for precision medicine
数据科学工具可识别精准医学中强大的暴露-表型关联
- 批准号:
10653214 - 财政年份:2021
- 资助金额:
$ 69.78万 - 项目类别:
Data science tools to identify robust exposure-phenotype associations for precision medicine
数据科学工具可识别精准医学中强大的暴露-表型关联
- 批准号:
10874056 - 财政年份:2021
- 资助金额:
$ 69.78万 - 项目类别:
Data science tools to identify robust exposure-phenotype associations for precision medicine
数据科学工具可识别精准医学中强大的暴露-表型关联
- 批准号:
10487388 - 财政年份:2021
- 资助金额:
$ 69.78万 - 项目类别:
Precision Cardiovascular Medicine for Multi-Ethnic Populations
为多民族人群提供精准心血管医学
- 批准号:
9917879 - 财政年份:2018
- 资助金额:
$ 69.78万 - 项目类别:
相似海外基金
The Illinois Precision Medicine Consortium (IPMC) All of Us Research Program Site
伊利诺伊州精准医学联盟 (IPMC) All of Us 研究计划网站
- 批准号:
10872859 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Nutrition for Precision Health, powered by the All of Us Research Program: Research Coordinating Center
精准健康营养,由“我们所有人研究计划”提供支持:研究协调中心
- 批准号:
10874354 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
All of Us Research Program Trans-America Consortium of the HCSRN
我们所有人研究计划 HCSRN 泛美联盟
- 批准号:
10871074 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
All of Us Research Program Heartland Consortium (AoURP-HC)
我们所有人研究计划中心联盟 (AoURP-HC)
- 批准号:
10871732 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
DARSaW: Developing, Assessing, and Refining Synthetic Sampling Weights to Improve Generalizability of the All of Us Research Program Data
DARSaW:开发、评估和细化合成采样权重,以提高我们所有人研究计划数据的普遍性
- 批准号:
10796237 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Engaging Diverse Stakeholders in Genomic/Precision Medicine Research: The All of Us Research Program Engagement Core
让不同的利益相关者参与基因组/精准医学研究:我们所有人研究计划的参与核心
- 批准号:
10789515 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Investigation of the social context and physical environment on cardiovascular disease disparities in the All of Us Research Program
“我们所有人研究计划”中心血管疾病差异的社会背景和物理环境调查
- 批准号:
10798725 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
The Participant Center: Empowering All of Us Research Program participation across the United States
参与者中心:增强我们所有人参与美国各地研究计划的能力
- 批准号:
10774158 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Nutrition for Precision Health, powered by the All of Us Research Program: Research Coordinating Center
精准健康营养,由“我们所有人研究计划”提供支持:研究协调中心
- 批准号:
10757488 - 财政年份:2023
- 资助金额:
$ 69.78万 - 项目类别:
Multilevel analyses of oral health conditions among older adults in the All of Us Research Program
“我们所有人研究计划”中老年人口腔健康状况的多层次分析
- 批准号:
10658463 - 财政年份:2022
- 资助金额:
$ 69.78万 - 项目类别:














{{item.name}}会员




