Pathogenesis of Primary Biliary Cholangitis
原发性胆汁性胆管炎的发病机制
基本信息
- 批准号:10095117
- 负责人:
- 金额:$ 62.87万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-12-21 至 2024-11-30
- 项目状态:已结题
- 来源:
- 关键词:ArchitectureArtificial IntelligenceAutoimmuneAutoimmunityAutomobile DrivingBiologicalBiological AssayBiologyBloodCaringCellular ImmunityChemicalsClinicClinicalCollectionCytometryDataDevelopmentDimensionsDiseaseDisease ProgressionEnvironmentEvaluationFundingGenomicsGoalsHandHeelImmuneImmune systemImmunityIndividualInflammatoryInvestigationKnowledgeLightLiverLiver diseasesMachine LearningMass Spectrum AnalysisMeasuresMediatingMetabolicMetabolismMethodsMolecular ProfilingOnset of illnessPathogenesisPathogenicityPathologic ProcessesPathway interactionsPatientsPeripheralPharmacologyPhenotypePilot ProjectsPositioning AttributePrimary biliary cirrhosisProcessProteinsPublicationsQuestionnairesResearch DesignResolutionResourcesRiskRoleSamplingSeverity of illnessSpecimenStatistical MechanicsSubgroupSystemTestingTherapeuticToxic Environmental SubstancesUniversitiesWorkadvanced diseasebasebiobankcell free DNAclinically relevantcombinatorialeffective therapygenomic locusimprovedinnovationinsightmetabolomemethylomemultidisciplinarymultiple omicsnew therapeutic targetnovelnovel strategiesnovel therapeuticspatient orientedquantumresponsetoxin metabolismtranscriptometranslational study
项目摘要
PROJECT SUMMARY/ABSTRACT
The major goal of this proposal is to conduct the first multi-omics translational study of Primary Biliary
Cholangitis (PBC), thereby identifying the systems-level networks driving pathological processes in this rare,
autoimmune liver disease. Improved understanding of PBC pathogenesis is urgently needed to inform tailored
care and the development of new effective therapies. Comprehensive assessments of immunity and the role of
environmental influence in PBC are currently lacking. Such evaluations would provide critical knowledge to
leverage recent advances in the field’s ability to pharmacologically alter the immune system, thereby providing
new hope to PBC patients. Having made significant contributions to the understanding of the genomic
architecture underlying development of autoimmunity in PBC, we propose a novel, patient-oriented, multi-
omics approach. In this new application, we will decipher how peripheral cellular immunity and non-cellular
circulating factors contribute to PBC pathogenesis. We hypothesize that multi-omic analyses integrating
cellular and non-cellular factors will identify systems-level pathways driving PBC pathogenesis. To test
this hypothesis, we develop an innovative platform that combines aspects of machine learning and quantum
statistical mechanics to identify omics-based signatures of PBC that when integrated with clinical features
will unveil biological pathways driving disease pathogenesis.
To perform this multi-omic study of PBC, we have assembled a world-class, multi-disciplinary team
synergizing expertise in PBC biology and omics-scale analytics as well as resources across Mayo Clinic and
Columbia University. With a new, in-hand collection of diverse biological specimens from 300 deeply-
phenotyped PBC patients and 300 well-matched controls, our studies are already underway with preliminary
data demonstrating measureable immunome, methylome, inflammatory protein, exposome, and metabolome
differences between PBC patients and controls. In Aim 1, we thoroughly evaluate peripheral immune
composition (the immunome) and activation state (methylome, transcriptome, inflammatory proteins) using
mass-cytometry (CyTOF), sequencing- and proximity extension-based methods. In Aim 2, we perform a
cutting-edge study of exogenous chemicals “the exposome” and endogenous metabolites “the metabolome”
using ultrahigh resolution mass spectroscopy to discover pathogenic alterations in metabolism in PBC. We
also develop an assay to quantify liver-specific cell-free DNA in blood as a measure of disease severity. In Aim
3, we integrate omic-specific signatures (Aims 1 and 2) using a novel approach to identify and prioritize PBC-
associated features for further biological investigation. We then infer clinically-relevant subgroups of PBC
patients by performing similarity network fusion analysis. In summary, using state-of-the-art, multi-omic
analyses, we will discover systems-level networks driving PBC pathogenesis, spurring development of new
hypotheses and studies designed to elucidate PBC pathobiology and identify novel therapies.
项目总结/文摘
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
KONSTANTINOS N LAZARIDIS其他文献
KONSTANTINOS N LAZARIDIS的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('KONSTANTINOS N LAZARIDIS', 18)}}的其他基金
Dissecting the pathogenesis and outcomes of PSC using multi-omics by studying the exposome and genome
通过研究暴露组和基因组,利用多组学剖析 PSC 的发病机制和结果
- 批准号:
10453649 - 财政年份:2018
- 资助金额:
$ 62.87万 - 项目类别:
Dissecting the pathogenesis and outcomes of PSC using multi-omics by studying the exposome and genome
通过研究暴露组和基因组,利用多组学剖析 PSC 的发病机制和结果
- 批准号:
10246292 - 财政年份:2018
- 资助金额:
$ 62.87万 - 项目类别:
PSC Resource Of Genetic Risk, Environment and Synergy Studies (PROGRESS)
PSC 遗传风险、环境和协同研究资源(进展)
- 批准号:
8724482 - 财政年份:2010
- 资助金额:
$ 62.87万 - 项目类别:
PSC Resource Of Genetic Risk, Environment and Synergy Studies (PROGRESS)
PSC 遗传风险、环境和协同研究资源(进展)
- 批准号:
8149933 - 财政年份:2010
- 资助金额:
$ 62.87万 - 项目类别:
PSC Resource Of Genetic Risk, Environment and Synergy Studies (PROGRESS)
PSC 遗传风险、环境和协同研究资源(进展)
- 批准号:
8530224 - 财政年份:2010
- 资助金额:
$ 62.87万 - 项目类别:
PSC Resource Of Genetic Risk, Environment and Synergy Studies (PROGRESS)
PSC 遗传风险、环境和协同研究资源(进展)
- 批准号:
8035823 - 财政年份:2010
- 资助金额:
$ 62.87万 - 项目类别:
PSC Resource Of Genetic Risk, Environment and Synergy Studies (PROGRESS)
PSC 遗传风险、环境和协同研究资源(进展)
- 批准号:
8322715 - 财政年份:2010
- 资助金额:
$ 62.87万 - 项目类别:
相似海外基金
TRUST2 - Improving TRUST in artificial intelligence and machine learning for critical building management
TRUST2 - 提高关键建筑管理的人工智能和机器学习的信任度
- 批准号:
10093095 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Collaborative R&D
QUANTUM-TOX - Revolutionizing Computational Toxicology with Electronic Structure Descriptors and Artificial Intelligence
QUANTUM-TOX - 利用电子结构描述符和人工智能彻底改变计算毒理学
- 批准号:
10106704 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
EU-Funded
Artificial intelligence in education: Democratising policy
教育中的人工智能:政策民主化
- 批准号:
DP240100602 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Discovery Projects
Application of artificial intelligence to predict biologic systemic therapy clinical response, effectiveness and adverse events in psoriasis
应用人工智能预测生物系统治疗银屑病的临床反应、有效性和不良事件
- 批准号:
MR/Y009657/1 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Fellowship
REU Site: CyberAI: Cybersecurity Solutions Leveraging Artificial Intelligence for Smart Systems
REU 网站:CyberAI:利用人工智能实现智能系统的网络安全解决方案
- 批准号:
2349104 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
EAGER: Artificial Intelligence to Understand Engineering Cultural Norms
EAGER:人工智能理解工程文化规范
- 批准号:
2342384 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Reversible Computing and Reservoir Computing with Magnetic Skyrmions for Energy-Efficient Boolean Logic and Artificial Intelligence Hardware
用于节能布尔逻辑和人工智能硬件的磁斯格明子可逆计算和储层计算
- 批准号:
2343607 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
I-Corps: Translation Potential of a Secure Data Platform Empowering Artificial Intelligence Assisted Digital Pathology
I-Corps:安全数据平台的翻译潜力,赋能人工智能辅助数字病理学
- 批准号:
2409130 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Planning: Artificial Intelligence Assisted High-Performance Parallel Computing for Power System Optimization
规划:人工智能辅助高性能并行计算电力系统优化
- 批准号:
2414141 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Standard Grant
Reassessing the Appropriateness of currently-available Data-set Protection Levers in the era of Artificial Intelligence
重新评估人工智能时代现有数据集保护手段的适用性
- 批准号:
23K22068 - 财政年份:2024
- 资助金额:
$ 62.87万 - 项目类别:
Grant-in-Aid for Scientific Research (B)