Interpretable Machine Learning to Identify Alzheimer's Disease Therapeutic Targets
可解释的机器学习识别阿尔茨海默病的治疗目标
基本信息
- 批准号:10132962
- 负责人:
- 金额:$ 58.2万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-02-15 至 2023-12-21
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAlzheimer&aposs DiseaseAlzheimer&aposs disease diagnosisAlzheimer&aposs disease modelAlzheimer&aposs disease therapeuticAmyloid beta-ProteinAnimal ModelAwardBig DataBiologicalBiological MarkersBrainCaenorhabditis elegansCause of DeathCell physiologyClassificationCollaborationsComplexComputer ModelsCountryDataData ScienceData SetDiseaseDisease ProgressionDrug TargetingEducational workshopFrequenciesGene ExpressionGenesGenetic studyHeterogeneityHumanImageIndividualInternationalInterventionKnowledgeLabelLassoLearningLinear ModelsMachine LearningMeasuresMethodsModelingMolecularMolecular ChaperonesMultiomic DataNatureNematodaNetwork-basedNeurofibrillary TanglesOralOrthologous GeneOutcomePaperPathogenesisPathologicPathologyPathway interactionsPeptidesPhenotypePlayPreventionRNA InterferenceResearch PriorityRoleSelection CriteriaSenile PlaquesSignal TransductionStatistical ModelsSupervisionTechniquesTestingToxic effectTrainingTransgenic OrganismsTreesUnited StatesValidationVariantbasebiomarker discoverybrain tissuecandidate markerclinical practicedeep learningdirect applicationdisease heterogeneitydrug response predictioneffective therapyexperimental studyfeature selectiongene functiongene interactionhigh dimensionalityhuman dataimprovedin vivointerestknock-downmachine learning algorithmmachine learning methodmolecular markernoveloutcome predictionphenotypic biomarkerprecision medicinepredictive modelingprotective factorsproteostasisrapid growthresponsesuccesstau Proteinstherapeutic targettherapy development
项目摘要
Project Summary
Alzheimer’s disease (AD) is an urgent national and international research priority. Amyloid plaques and
neurofibrillary tangles are the hallmark of AD. Their building blocks are Amyloid-β (Aβ) and tau, respectively.
At present, we lack an understanding of the set of genes that affect formation of plaques and tangles along with
protective and pathological responses to these toxic peptides.
Biologists are now gathering gene expression data and Aβ and tau measures from human brain tissues. The
current approach attempts to find a set of features (here, gene expression levels) that best predict an outcome (Aβ
or tau level). The identified features, biomarkers, can help determine the molecular basis for plaques and tangles.
Unfortunately, false positive biomarkers are very common, as evidenced by low success rates of replication in
independent data and low success reaching clinical practice (less than 1%). We seek to radically shift the current
paradigm in biomarker discovery by resolving three fundamental problems with the current approach using novel,
theoretically well-founded machine learning (ML) methods to learn interpretable models from data.
Aim 1. Learn an interpretable feature representation from publicly available, high-throughput brain data.
High-dimensionality, hidden variables, and complex feature correlations create a discrepancy between
predictability (i.e., observed statistical associations) and true biological interactions. To increase the chance to
identify true positive biomarkers, we need new feature selection criteria to learn a model that better explains
rather than simply predicts the outcome. To do so, our proposed ML algorithms will identify the genes that are
likely to give a meaningful explanation of the outcome (Aβ or tau level) by inferring both the functions of genes
in the cellular processes contributing to AD and the gene interaction network from many existing brain datasets.
Aim 2. Make interpretable predictions using a unified framework to explain model predictions. Due to
disease heterogeneity, complex models (e.g., deep learning or ensemble models) often more accurately describe
relationships between genes and an outcome than simpler, linear models, but lack interpretability. We will
develop a novel ML framework that interprets complex model predictions by estimating the importance of each
feature to a specific prediction, which will identify features of high importance for each individual as personalized
markers and classify subjects based on these importance estimates.
Aim 3. Validate the identified candidate biomarkers using powerful worm models of AD. Analyzing
observational data without doing interventional experiments cannot prove causal relationships. In collaboration
with co-I Matt Kaeberlein, we will utilize powerful nematode models of AD to test our hypotheses on the role
of certain genes as disease modifiers, and develop a new way to refine the models based on this knowledge.
Successful completion of this project will result in previously unknown molecular basis for Aβ and tau levels,
potential therapeutic targets, and general ML techniques widely applicable to many other data science problems.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Su-In Lee其他文献
Su-In Lee的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Su-In Lee', 18)}}的其他基金
Interpretable Machine Learning to Identify Alzheimer's Disease Therapeutic Targets
可解释的机器学习识别阿尔茨海默病的治疗目标
- 批准号:
10613437 - 财政年份:2019
- 资助金额:
$ 58.2万 - 项目类别:
Interpretable Machine Learning to Identify Alzheimer's Disease Therapeutic Targets
可解释的机器学习识别阿尔茨海默病的治疗目标
- 批准号:
10347341 - 财政年份:2019
- 资助金额:
$ 58.2万 - 项目类别:
Opening the Black Box of Machine Learning Models
打开机器学习模型的黑匣子
- 批准号:
10437684 - 财政年份:2018
- 资助金额:
$ 58.2万 - 项目类别:
Opening the Black Box of Machine Learning Models
打开机器学习模型的黑匣子
- 批准号:
10224845 - 财政年份:2018
- 资助金额:
$ 58.2万 - 项目类别:
Application of Data Sciences in Traumatic Brain Injury
数据科学在脑外伤中的应用
- 批准号:
9685513 - 财政年份:2018
- 资助金额:
$ 58.2万 - 项目类别:
Opening the Black Box of Machine Learning Models
打开机器学习模型的黑匣子
- 批准号:
10020414 - 财政年份:2018
- 资助金额:
$ 58.2万 - 项目类别:
Core F: Artificial Intelligence and Bioinformatics
核心F:人工智能和生物信息学
- 批准号:
10260483 - 财政年份:1997
- 资助金额:
$ 58.2万 - 项目类别:
Core F: Artificial Intelligence and Bioinformatics
核心F:人工智能和生物信息学
- 批准号:
10438909 - 财政年份:1997
- 资助金额:
$ 58.2万 - 项目类别:
Core F: Artificial Intelligence and Bioinformatics
核心F:人工智能和生物信息学
- 批准号:
10670111 - 财政年份:1997
- 资助金额:
$ 58.2万 - 项目类别:
Core F: Artificial Intelligence and Bioinformatics
核心F:人工智能和生物信息学
- 批准号:
10042623 - 财政年份:1997
- 资助金额:
$ 58.2万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 58.2万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 58.2万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 58.2万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 58.2万 - 项目类别:
Studentship














{{item.name}}会员




