Digital Phenotyping for Computational Models of Relapse Prediction in Early Course Psychosis
早期精神病复发预测计算模型的数字表型分析
基本信息
- 批准号:10133145
- 负责人:
- 金额:$ 19.1万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-04-01 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:AccelerometerAddressAnxietyAwardAwarenessBackBehaviorBehavioralBiological MarkersCaregiver BurdenCaringCellular PhoneChronicChronic DiseaseClinicalClinical InformaticsClinical ResearchCognitionCognitiveComplexComputer ModelsComputing MethodologiesDataData ScienceDetectionDevelopmentDevicesDiseaseEarly InterventionEffectivenessEmergency department visitEngineeringEnsureEnvironmentEnvironmental Risk FactorEventFeedbackGoalsHealth SciencesHealth Services AccessibilityHospitalizationHumanImpaired cognitionIn SituIndividualInterviewIsraelLearningLogistic RegressionsMachine LearningMeasurementMeasuresMedical centerMedicineMental disordersMentorsMethodsModelingMoodsNatureOutcomeOwnershipParticipantPatient Self-ReportPharmaceutical PreparationsPhenotypePhysical activityPhysiologicalPhysiologyPilot ProjectsPopulationPredictive ValueProcessProductivityProspective StudiesPsychiatryPsychosesPsychotic DisordersQuality of lifeRelapseReproducibilityResearchResearch Domain CriteriaResearch MethodologyResearch PersonnelRiskRisk FactorsRunningSchizophreniaScienceSeverity of illnessSleepStatistical MethodsStructureSurveysSymptomsSystemTechnologyTimeTrainingTraining ProgramsTreatment CostVariantWorkbasebiological researchbiomarker developmentcare costscare systemsclinical heterogeneityclinical phenotypeclinically relevantcognitive testingcomputational basiscost effectivedata modelingdesigndigitaldisease classificationeconomic costevidence baseexperiencefitbitfunctional disabilityfunctional outcomesimprovedin vivoindividual patientlongitudinal analysislongitudinal coursemHealthmachine learning methodmedical specialtiesmobile computingmultidisciplinaryneural circuitneuropsychiatryneurotoxicopen sourcepersonalized interventionpredictive modelingpreventprimary outcomerelapse predictionrelapse riskresponsible research conductrisk predictionsecondary outcomesensorsevere mental illnesssmart watchsocialtoolwearable devicewearable sensor technology
项目摘要
Project Summary
The candidate requests support for a four-year program of training and research to better understand
how smartphone based digital phenotyping and computational methods can predict relapse and create digital
phenotypes of symptoms and clinical outcomes in early course psychosis.
In the proposed training plan, the candidate will build upon his previous experiences in engineering,
clinical informatics, and clinical psychiatry to perform a multidisciplinary project at Beth Israel Deaconess
Medical Center. His training plan includes training in: 1) statistical methods for multivariate longitudinal analysis
and predictive inference 2) the neuropsychiatric assessment of schizophrenia 3) longitudinal clinical research
methodology with a focus on mobile technologies, and 4) the responsible conduct of research.
Even with appropriate care, relapse is common in early course psychosis and each episode is
associated higher costs of care, poorer lifetime outcomes, and chronicity of the disease. There is a need to
learn more about the personal factors associated with relapse for individual patients in order to improve risk
predictions, ensure appropriate early interventions, and support coordinated specialty care services for
schizophrenia. This study proposes that smartphones sensors eg (GPS, accelerometer), wearable devices like
smartwatches collecting physiology, and smartphone based surveys and cognitive tests, when combined with
appropriate statistical methods, can capture digital biomarkers, refereed to here as digital phenotypes, of early
course psychosis that can offer personalized relapse prediction and augment population level risk factors.
This candidate's research plan seeks to: 1) propose digital phenotypes and relapse models of early
course psychosis captured in an affordable and scalable manner from subject's personal smartphones as well
as a wearable sensor in order to automatically collect self-report of symptoms, behaviors, cognition, and
physiology 2) and evaluate the accuracy of digital phenotypes and the relapse prediction models.
This study proposes to address this hypothesis by utilizing smartphone based digital phenotyping
methods, primarily through running the Beiwe app on subjects' own smartphones, to capture longitudinal data
on symptoms, behaviors, cognition, and physiology across subjects' natural environments. These studies will
be performed across 3.5 years in subjects with early course psychosis and range between 6 to 12 months.
The broader aim of this research is to understand the systems and processes, both personal and
environmental, which contribute to relapse in early course psychosis. An understanding of the computational
basis of relapse will inform better nosology, allow development of biomarkers of illness that may offer better
targets for biological research, inform development of personalized interventions for psychotic illnesses, and
help support early interventions for schizophrenia.
项目摘要
候选人要求支持一个为期四年的培训和研究计划,以更好地了解
基于智能手机的数字表型分析和计算方法如何预测复发并创建数字
早期病程精神病的症状表型和临床结果。
在拟议的培训计划中,候选人将建立在他以前的工程经验,
临床信息学和临床精神病学,在贝斯以色列女执事进行多学科项目
医学中心他的培训计划包括:1)多元纵向分析的统计方法
2)精神分裂症的神经精神评估3)纵向临床研究
以移动的技术为重点的方法; 4)负责任地进行研究。
即使有适当的护理,复发在早期精神病中也很常见,每次发作都是
相关的更高的护理费用,更差的终身结局和疾病的慢性化。有必要
了解更多与个别患者复发相关的个人因素,以提高风险
预测,确保适当的早期干预,并支持协调的专业护理服务,
精神分裂症这项研究提出,智能手机传感器,如(GPS,加速度计),可穿戴设备,如
智能手表收集生理数据,以及基于智能手机的调查和认知测试,
适当的统计方法,可以捕获数字生物标志物,这里称为数字表型,
可以提供个性化的复发预测和增加人口水平的风险因素。
该候选人的研究计划旨在:1)提出早期癌症的数字表型和复发模型
也可以从受试者的个人智能手机以负担得起的和可扩展的方式捕获课程精神病
作为可穿戴传感器,以自动收集症状、行为、认知的自我报告,
生理学2)并评估数字表型和复发预测模型的准确性。
本研究提出利用智能手机的数字表型来解决这一假设
方法,主要是通过在受试者自己的智能手机上运行Beiwe应用程序,
症状、行为、认知和生理学的研究。这些研究将
在早期精神病受试者中进行3.5年,范围为6至12个月。
这项研究的更广泛的目标是了解系统和过程,无论是个人的,
环境,这有助于早期精神病的复发。理解计算
复发的基础将为更好的疾病分类学提供信息,允许开发疾病的生物标志物,
生物学研究的目标,为精神病的个性化干预提供信息,
有助于支持精神分裂症的早期干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
John Torous其他文献
John Torous的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('John Torous', 18)}}的其他基金
Digital Phenotyping for Computational Models of Relapse Prediction in Early Course Psychosis
早期精神病复发预测计算模型的数字表型分析
- 批准号:
9898476 - 财政年份:2018
- 资助金额:
$ 19.1万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
EU-Funded
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 19.1万 - 项目类别:
Research Grant