Statistical Models for Dissecting Human Population Admixture and its Role in Evolution and Disease
解剖人口混合的统计模型及其在进化和疾病中的作用
基本信息
- 批准号:10239056
- 负责人:
- 金额:$ 33.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2024-04-30
- 项目状态:已结题
- 来源:
- 关键词:AdmixtureAllelesChromosome MappingCollectionComplexComputing MethodologiesDNAData SetDiseaseEnsureEuropeanEventEvolutionGeneticGenomeGenomicsHumanLeadMeasurementMethodsModelingModernizationPartner in relationshipPatternPhenotypePopulationPopulation GroupProcessRecording of previous eventsRecurrenceRiskRoleSeriesSourceStatistical MethodsStatistical ModelsStructureTechnologyTimeWorkanalytical toolgenetic architecturegenetic evolutioninsightnovelreference genomestatistical and machine learningstructural genomicstool
项目摘要
Project Summary
Over the past decade, it has become clear that mixture between diverged populations (admixture)
has been a recurrent feature in human evolution. It has also become evident that a detailed understanding of admixture is essential for effective disease gene mapping as well as evolutionary
inference. Nevertheless, adequate analytical tools to dissect admixture and its impact on phenotype are lacking. As a result, disease gene mapping or evolutionary studies have either excluded
admixed populations or relied on simplified models at the risk of inaccurate inferences. This proposal proposes to develop computational methods to infer the genomic structure and
history of admixed populations across a range of evolutionary time scales and to leverage this structure to obtain a comprehensive understanding of the genetic architecture
and evolution of complex phenotypes. The proposed methods will integrate powerful sources of information from ancient DNA with genomes from present-day human populations. These methods will enable populations with a history of admixture to
be studied just as effectively as homogeneous populations.
The first step in obtaining a thorough understanding of admixture is a principled and scalable statistical framework to infer fine-scale genomic structure (local ancestry) and evolutionary relationships.
This proposal leverages recent advances in statistical machine learning to develop effective tools
for the increasingly common and challenging problem of local ancestry inference where reference
genomes for ancestral populations are unavailable (de-novo local ancestry). Further, the proposal
intends to develop models to infer complex evolutionary histories as well as realistic mating patterns
in admixed populations. These inferences will form the starting point to systematically understand
how admixture has shaped phenotypes. For example, it is becoming clear that admixture between
modern humans and archaic humans (Neanderthals and Denisovans) could have had a major impact on human phenotypes. This question will be explored by applying novel statistical methods to
large genetic datasets with phenotypic measurements to assess the adaptive as well as phenotypic
impact of Neanderthal alleles. Finally, large collections of genomes from extinct populations that
are now becoming available due to advances in ancient DNA technologies can lead to vastly more
powerful methods for evolutionary inference that overcome the limitation of methods that rely
only on extant genomes. Statistical models that use ancient genome time-series to efficiently infer
admixture histories, local ancestry and selection will be developed.
项目总结
项目成果
期刊论文数量(13)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
STENSL: Microbial Source Tracking with ENvironment SeLection.
- DOI:10.1128/msystems.00995-21
- 发表时间:2022-10-26
- 期刊:
- 影响因子:6.4
- 作者:
- 通讯作者:
Advancing admixture graph estimation via maximum likelihood network orientation.
- DOI:10.1093/bioinformatics/btab267
- 发表时间:2021-07-12
- 期刊:
- 影响因子:0
- 作者:Molloy EK;Durvasula A;Sankararaman S
- 通讯作者:Sankararaman S
An efficient linear mixed model framework for meta-analytic association studies across multiple contexts.
用于跨多个上下文的元分析关联研究的有效线性混合模型框架。
- DOI:
- 发表时间:2016
- 期刊:
- 影响因子:0
- 作者:Jew,Brandon;Li,Jiajin;Sankararaman,Sriram;Sul,JaeHoon
- 通讯作者:Sul,JaeHoon
A Unifying Framework for Imputing Summary Statistics in Genome-Wide Association Studies
全基因组关联研究中汇总统计数据的统一框架
- DOI:10.1089/cmb.2019.0449
- 发表时间:2020
- 期刊:
- 影响因子:1.7
- 作者:Wu, Yue;Eskin, Eleazar;Sankararaman, Sriram
- 通讯作者:Sankararaman, Sriram
Deep learning-based phenotype imputation on population-scale biobank data increases genetic discoveries.
- DOI:10.1038/s41588-023-01558-w
- 发表时间:2023-12
- 期刊:
- 影响因子:30.8
- 作者:An, Ulzee;Pazokitoroudi, Ali;Alvarez, Marcus;Huang, Lianyun;Bacanu, Silviu;Schork, Andrew J.;Kendler, Kenneth;Pajukanta, Paeivi;Flint, Jonathan;Zaitlen, Noah;Cai, Na;Dahl, Andy;Sankararaman, Sriram
- 通讯作者:Sankararaman, Sriram
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sriram Sankararaman其他文献
Sriram Sankararaman的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sriram Sankararaman', 18)}}的其他基金
Statistical methods to infer structure and impact of ancient admixture
推断古代外加剂的结构和影响的统计方法
- 批准号:
8927663 - 财政年份:2014
- 资助金额:
$ 33.3万 - 项目类别:
Statistical methods to infer structure and impact of ancient admixture
推断古代外加剂的结构和影响的统计方法
- 批准号:
9210099 - 财政年份:2014
- 资助金额:
$ 33.3万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 33.3万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 33.3万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 33.3万 - 项目类别: