New Computational Systems Biology Methods for Modeling Gene Regulatory Circuits
用于建模基因调控电路的新计算系统生物学方法
基本信息
- 批准号:10246751
- 负责人:
- 金额:$ 39.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-08-01 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsAutologousBasic ScienceBehaviorCell Differentiation processCellsCellular biologyChromosome MappingClinicalCollaborationsComplexComputational algorithmDataData AnalysesDecision MakingDevelopmental ProcessDiseaseGene ExpressionGenesGenomic approachGenomic medicineGenomicsHealthHumanInterventionKineticsLightLiteratureMachine LearningMaintenanceMalignant NeoplasmsMeasuresMethodsModelingNamesNonlinear DynamicsPublic HealthRegenerative MedicineRegulationRegulator GenesStatistical Data InterpretationSystemSystems BiologyTechnologyTestingTherapeuticTherapeutic Interventionalgorithm developmentbasecancer therapycombinatorialcomputer frameworkdesignexperimental studygenomic datagenomic profileshuman diseaseinterestmathematical modelnovel strategiesstem cell therapysuccesstooltumorigenesis
项目摘要
PROJECT SUMMARY/ABSTRACT
Cellular state transitions (i.e. from pluripotent to committed, replicative to quiescent, etc.) require the
coordinated regulation of thousands of genes. Therapeutically harnessing these transitions holds great
promise for human health;; for instance, autologous stem cell therapy has been successfully used in
regenerative medicine and cancer treatments, among others. While some of the key regulatory switches are
known, the field lacks a systems-level understanding of the genomic circuits that control these transitions,
information that is critical for informed clinical intervention. Here, we will develop an integrated computational
framework to identify core gene regulatory circuits from large gene networks and predict their dynamics and
regulatory functions without the need of detailed network kinetic parameters. Advances in genomics profiling
technology have enabled the mapping of gene regulatory networks, thus we now have the capacity to identify
combinatorial interactions among genes and the master regulators of state transitions. Some systems biology
approaches have simulated the dynamics of a gene regulatory circuit, but traditional methods suffer from two
key issues. First, there is no rational rule to choose an appropriate set of regulator genes in a large network to
model. Second, since it is hard to directly measure most network kinetic parameters from experiment,
modeling results are based on a set of guessed parameters that can be less than optimal, limiting the
application of mathematical modeling to large systems and the prediction power of systems biology. To
address these issues, we recently developed algorithm named random circuit perturbation (RACIPE). RACIPE
generates an ensemble of circuit models, each of which corresponds to a distinct set of random kinetic
parameters, and uniquely identifies robust features, such as clusters of stable gene expression states, by
statistical analysis. We will further enhance RACIPE algorithms for large systems and new data analysis tools
using machine learning. This approach will convert a traditional nonlinear dynamics problem into a data
analysis problem, an essential step for extending the application of gene circuit modeling to large systems. It
also provides a novel strategy to integrate top-down genomics approaches with bottom-up mathematical
modeling. The algorithms will be tested and refined using literature-based gene networks, public genomics
data, and data from collaboration, with a focus on cell differentiation in developmental processes and state
transitions in oncogenesis. Success of the project will result in a comprehensive toolkit that will unveil the gene
regulatory mechanism of cellular decision-making in any cell of interest. The algorithmic development is
expected to have a broad impact on not only basic research in systems biology but also shed light on
therapeutic intervention in genomic medicine.
项目总结/摘要
细胞状态转换(即从多能性到定型,从复制性到静止性等) 要求
成千上万的基因的协调调节。在治疗上利用这些转变具有很大的意义。
例如,自体干细胞治疗已成功用于治疗癌症,
再生医学和癌症治疗等。虽然一些关键的调控开关是
众所周知,该领域缺乏对控制这些转换的基因组电路的系统级理解,
信息是至关重要的知情的临床干预。在这里,我们将开发一个集成的计算
从大型基因网络中识别核心基因调控回路并预测其动态的框架,
调控功能,而不需要详细的网络动力学参数。
技术已经使基因调控网络的绘图成为可能,因此我们现在有能力识别
基因之间的组合相互作用和状态转换的主调节器。一些系统生物学
方法已经模拟了基因调控电路的动力学,但是传统方法受到两个方面的影响。
关键问题。首先,在一个大型网络中,没有合理的规则来选择一组合适的调节基因,
其次,由于很难从实验中直接测量大多数网络动力学参数,
建模结果是基于一组猜测的参数,这些参数可能不是最佳的,从而限制了
数学建模在大型系统中的应用以及系统生物学的预测能力。
为了解决这些问题,我们最近开发了一种称为随机电路扰动的算法。
生成电路模型的集合,每个模型对应于一组不同的随机动力学模型。
参数,并唯一地识别鲁棒特征,如稳定基因表达状态的聚类,
统计分析。我们将进一步增强大型系统的RACIPE算法和新的数据分析工具
使用机器学习。这种方法将传统的非线性动力学问题转化为数据
分析问题,这是将基因电路建模的应用扩展到大系统的必要步骤。
也提供了一种新的策略,将自上而下的基因组学方法与自下而上的数学方法相结合。
这些算法将使用基于文献检索的基因网络、公共基因组学和基因组学进行测试和改进。
数据,以及合作数据,重点是发育过程和状态中的细胞分化
该项目的成功将导致一个全面的工具包,将揭示基因
在任何感兴趣的细胞中细胞决策的调节机制。算法的开发是
预计不仅对系统生物学的基础研究产生广泛的影响,而且还将揭示
基因组医学的治疗干预。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Mingyang Lu其他文献
Mingyang Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Mingyang Lu', 18)}}的其他基金
New Computational Systems Biology Methods for Modeling Gene Regulatory Circuits
用于建模基因调控电路的新计算系统生物学方法
- 批准号:
9752643 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
New Computational Systems Biology Methods for Modeling Gene Regulatory Circuits
用于建模基因调控电路的新计算系统生物学方法
- 批准号:
10268260 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
New Computational Systems Biology Methods for Modeling Gene Regulatory Circuits
用于建模基因调控电路的新计算系统生物学方法
- 批准号:
10455602 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
New Computational Systems Biology Methods for Modeling Gene Regulatory Circuits
用于建模基因调控电路的新计算系统生物学方法
- 批准号:
9574761 - 财政年份:2018
- 资助金额:
$ 39.25万 - 项目类别:
相似海外基金
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Continuing Grant
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 39.25万 - 项目类别:
Research Grant