Structural Biological Development of Fungal-Specific Calcineurin Inhibitors
真菌特异性钙调神经磷酸酶抑制剂的结构生物学发展
基本信息
- 批准号:10248016
- 负责人:
- 金额:$ 66.92万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2014
- 资助国家:美国
- 起止时间:2014-08-04 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:AffinityAnabolismAnimal ModelAnimalsAntifungal AgentsAspergillosisAspergillus fumigatusBindingBiologic DevelopmentBiologicalBiological AssayCalcineurinCalcineurin inhibitorCalorimetryCandida albicansCandida aurisCandidiasisCause of DeathChemicalsChemistryClinicalCollaborationsComplexCoupledCryptococcosisCryptococcus neoformansCrystallizationDNA Sequence AlterationData CollectionDevelopmentDiseaseDrug resistanceEnzymesExhibitsFK506FoundationsGeneticHumanImmune systemImmunocompromised HostImmunosuppressionIn VitroIndustrial fungicideInfectionInterdisciplinary StudyIsotope LabelingKnowledgeLeadLibrariesLigandsMedicalMethodsModelingModificationMolecularMusMutation AnalysisMycosesNMR SpectroscopyOralPathogenesisPathogenicityPatientsPharmaceutical ChemistryPharmaceutical PreparationsPharmacologyPhysiologic pulsePhysiologyPositioning AttributePredispositionProteinsReactionResistanceRhizopusRoentgen RaysSignal PathwayStandardizationStreptomycesStructureStructure-Activity RelationshipT-Cell ActivationTacrolimus Binding Protein 1ATestingTherapeutic InterventionTitrationsTranslatingTreatment EfficacyWorkanalogbasebiophysical propertiescalcineurin phosphataseclinical efficacyclinically relevantcombinatorialdesigndrug developmenteffective therapyefficacy testingexperiencegenetic manipulationimprovedin vitro Assayin vivoinhibitor/antagonistiterative designmolecular dynamicsmolecular modelingmouse modelnovelpathogenic fungusprotein structuresimulationsmall moleculestructural biology
项目摘要
Invasive fungal infections are a leading cause of death in immunocompromised patients. Translating molecular
understanding into clinical benefit is difficult because fungal pathogens and their hosts have similar eukaryotic
physiology. As a result, current antifungals have limited clinical efficacy, are poorly fungicidal in the host, are in
some cases toxic, and are increasingly ineffective due to emerging drug resistance. Over the last two decades,
through genetic and pharmacologic approaches we established that calcineurin (CN) phosphatase is a key
determinant for invasive fungal disease and a potential target for antifungal drug development. The CN inhibitor
FK506 significantly inhibits fungal CN but is also immunosuppressive in the host and not fungal-selective. Our
overall objective is to leverage our pathogenic fungal CN-FK506-FKBP12 complex X-ray structures for structure-
guided design of broad-spectrum non-immunosuppressive FK506 analogs using complementary medicinal
chemistry and combinatorial biosynthesis to develop a novel paradigm of fungal-specific antifungals. Our central
hypothesis is that a structure-based approach to design antifungals using molecular modeling, NMR dynamics,
and molecular dynamic (MD) simulations for specific targeting of fungal CN will lead to improved therapeutic
intervention. For a broader treatment perspective, we will focus on the major and newly recalcitrant clinical fungal
pathogens: Aspergillus fumigatus, Candida albicans, Candida auris, Cryptococcus neoformans, and Rhizopus
oryzae. In Aim 1, we will synthesize FK506/FK520 analogs with chemical modifications at the C21 and C22
positions, and at other structurally relevant positions (C9, C31) by combinatorial biosynthetic and synthetic
strategies. The C21 and C22 residues will be modified using different starter molecules through single-step
reactions. In parallel, we will employ combinatorial biosynthetic approach to produce modified FK506 analogs
through genetic manipulation of Streptomyces species, the natural producer of FK506. Analogs with high affinity
to form fungal CN-FKBP12 complexes will be screened for antifungal activity. In Aim 2, we will define selective
determinants of fungal CN inhibition with our pathogenic fungal CN ternary complex X-ray structures, coupled
with NMR-based inhibitor binding dynamics and MD simulations to selectively define the inhibitor interactions
that differentiate fungal and human CN-FK506-FKBP12 complex formation. Quantitative mapping of protein
ligand interactions, together with genetic mutational analyses, will enable design of optimized and more selective
analogs that minimize mammalian immunosuppression and enhance antifungal activity. In Aim 3, we will test
analogs for additional in vitro antifungal activity and define activity on mammalian CN through primary murine T
cell activation assays. Analogs that exhibit promising antifungal activity and reduced immunosuppression will be
tested for efficacy in murine models of invasive candidiasis, aspergillosis, and cryptococcosis. This work
capitalizes on our structural biology and NMR dynamics experience to design and synthesize novel fungal-
specific calcineurin inhibitors as a unique antifungal approach that are also active against drug-resistant isolates.
侵袭性真菌感染是免疫功能低下患者死亡的主要原因。翻译分子
由于真菌病原体及其宿主具有相似的真核生物特性,
physiology.因此,目前的抗真菌药物具有有限的临床功效,在宿主中的杀真菌效果差,
有些病例有毒,并且由于出现耐药性而变得越来越无效。在过去的二十年里,
通过遗传和药理学方法,我们确定钙调神经磷酸酶(CN)磷酸酶是关键
侵袭性真菌疾病的决定因素和抗真菌药物开发的潜在靶点。CN抑制剂
FK 506显著抑制真菌CN,但在宿主中也具有免疫抑制作用,并且不具有真菌选择性。我们
总体目标是利用我们的致病真菌CN-FK 506-FKBP 12复合物的X射线结构,
使用互补药物的广谱非免疫抑制性FK 506类似物的指导设计
化学和组合生物合成来开发真菌特异性抗真菌剂的新范例。我们的中央
假设是,基于结构的方法来设计抗真菌药物,使用分子建模,NMR动力学,
和分子动力学(MD)模拟真菌CN的特异性靶向将导致改善的治疗
干预为了更广泛的治疗前景,我们将重点关注主要和新发现的临床真菌感染。
病原体:烟曲霉、白色念珠菌、耳念珠菌、新型隐球菌和根霉
米。在目标1中,我们将合成在C21和C22处进行化学修饰的FK 506/FK 520类似物
位置,以及其他结构相关位置(C9,C31)通过组合生物合成和合成
战略布局C21和C22残基将使用不同的起始分子通过单步骤修饰,
反应.同时,我们将采用组合生物合成方法来生产修饰的FK 506类似物
通过对FK 506天然生产者链霉菌的遗传操作。具有高亲和力的类似物
以形成真菌CN-FKBP 12复合物,将筛选抗真菌活性。在目标2中,我们将定义选择性
真菌CN抑制的决定因素与我们的致病性真菌CN三元复合物的X射线结构,耦合
利用基于NMR的抑制剂结合动力学和MD模拟来选择性地定义抑制剂相互作用
区分真菌和人CN-FK 506-FKBP 12复合物形成。蛋白质定量图谱
配体相互作用,以及遗传突变分析,将使设计优化和更具选择性,
最小化哺乳动物免疫抑制和增强抗真菌活性的类似物。在目标3中,我们将测试
类似物的额外的体外抗真菌活性,并确定通过原代鼠T细胞对哺乳动物CN的活性
细胞活化测定。表现出有希望的抗真菌活性和减少免疫抑制的类似物将被
在侵袭性念珠菌病、曲霉病和隐球菌病的小鼠模型中测试其功效。这项工作
利用我们的结构生物学和NMR动力学经验,设计和合成新型真菌-
特异性钙调磷酸酶抑制剂作为一种独特的抗真菌方法,也对耐药菌株有效。
项目成果
期刊论文数量(7)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Structures of Pathogenic Fungal FKBP12s Reveal Possible Self-Catalysis Function.
- DOI:10.1128/mbio.00492-16
- 发表时间:2016-04-26
- 期刊:
- 影响因子:6.4
- 作者:Tonthat NK;Juvvadi PR;Zhang H;Lee SC;Venters R;Spicer L;Steinbach WJ;Heitman J;Schumacher MA
- 通讯作者:Schumacher MA
Leveraging Fungal and Human Calcineurin-Inhibitor Structures, Biophysical Data, and Dynamics To Design Selective and Nonimmunosuppressive FK506 Analogs.
- DOI:10.1128/mbio.03000-21
- 发表时间:2021-12-21
- 期刊:
- 影响因子:6.4
- 作者:Gobeil SM;Bobay BG;Juvvadi PR;Cole DC;Heitman J;Steinbach WJ;Venters RA;Spicer LD
- 通讯作者:Spicer LD
Had1 Is Required for Cell Wall Integrity and Fungal Virulence in Cryptococcus neoformans.
- DOI:10.1534/g3.117.300444
- 发表时间:2018-02-02
- 期刊:
- 影响因子:0
- 作者:Jung WH;Son YE;Oh SH;Fu C;Kim HS;Kwak JH;Cardenas ME;Heitman J;Park HS
- 通讯作者:Park HS
Calcineurin Targets Involved in Stress Survival and Fungal Virulence.
钙调神经素靶标参与应力存活和真菌毒力。
- DOI:10.1371/journal.ppat.1005873
- 发表时间:2016-09
- 期刊:
- 影响因子:6.7
- 作者:Park HS;Chow EW;Fu C;Soderblom EJ;Moseley MA;Heitman J;Cardenas ME
- 通讯作者:Cardenas ME
Dual action antifungal small molecule modulates multidrug efflux and TOR signaling.
- DOI:10.1038/nchembio.2165
- 发表时间:2016-10
- 期刊:
- 影响因子:14.8
- 作者:Shekhar-Guturja, Tanvi;Gunaherath, G. M. Kamal B.;Wijeratne, E. M. Kithsiri;Lambert, Jean-Philippe;Averette, Anna F.;Lee, Soo Chan;Kim, Taeyup;Bahn, Yong-Sun;Tripodi, Farida;Ammar, Ron;Doehl, Katja;Niewola-Staszkowska, Karolina;Schmitt, Lutz;Loewith, Robbie J.;Roth, Frederick P.;Sanglard, Dominique;Andes, David;Nislow, Corey;Coccetti, Paola;Gingras, Anne-Claude;Heitman, Joseph;Gunatilaka, A. A. Leslie;Cowen, Leah E.
- 通讯作者:Cowen, Leah E.
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
JOSEPH HEITMAN其他文献
JOSEPH HEITMAN的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('JOSEPH HEITMAN', 18)}}的其他基金
Malassezia and Candida auris: skin microbiome dysbiosis and de-regulation of cutaneous homeostasis
马拉色菌和耳念珠菌:皮肤微生物群失调和皮肤稳态失调
- 批准号:
10661959 - 财政年份:2023
- 资助金额:
$ 66.92万 - 项目类别:
RNAi-dependent epimutation roles in antimicrobial drug resistance and pathogenesis
RNAi 依赖性表突变在抗菌药物耐药性和发病机制中的作用
- 批准号:
10654857 - 财政年份:2022
- 资助金额:
$ 66.92万 - 项目类别:
Implications of mycoviral infection in Talaromyces marneffei: an analysis of human patient samples, RNAi, and hypermutation
马尔尼菲踝节菌中真菌病毒感染的影响:对人类患者样本、RNAi 和超突变的分析
- 批准号:
10191218 - 财政年份:2021
- 资助金额:
$ 66.92万 - 项目类别:
Implications of mycoviral infection in Talaromyces marneffei: an analysis of human patient samples, RNAi, and hypermutation
马尔尼菲踝节菌中真菌病毒感染的影响:对人类患者样本、RNAi 和超突变的分析
- 批准号:
10381581 - 财政年份:2021
- 资助金额:
$ 66.92万 - 项目类别:
The Genetic Basis of Virulence in Cryptococcus Neoformans
新型隐球菌毒力的遗传基础
- 批准号:
10658925 - 财政年份:2017
- 资助金额:
$ 66.92万 - 项目类别:
The Genetic Basis of Virulence in Cryptococcus Neoformans
新型隐球菌毒力的遗传基础
- 批准号:
10188404 - 财政年份:2017
- 资助金额:
$ 66.92万 - 项目类别:
The Genetic Basis of Virulence in Cryptococcus Neoformans
新型隐球菌毒力的遗传基础
- 批准号:
9389607 - 财政年份:2017
- 资助金额:
$ 66.92万 - 项目类别:
Structural Biological Development of Fungal-Specific Calcineurin Inhibitors
真菌特异性钙调神经磷酸酶抑制剂的结构生物学发展
- 批准号:
9113467 - 财政年份:2014
- 资助金额:
$ 66.92万 - 项目类别:
Structural Biological Development of Fungal-Specific Calcineurin Inhibitors
真菌特异性钙调神经磷酸酶抑制剂的结构生物学发展
- 批准号:
9324801 - 财政年份:2014
- 资助金额:
$ 66.92万 - 项目类别:
Structural Biological Development of Fungal-Specific Calcineurin Inhibitors
真菌特异性钙调神经磷酸酶抑制剂的结构生物学发展
- 批准号:
8745170 - 财政年份:2014
- 资助金额:
$ 66.92万 - 项目类别:
相似海外基金
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10590611 - 财政年份:2022
- 资助金额:
$ 66.92万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中的骨-脂肪相互作用
- 批准号:
10706006 - 财政年份:2022
- 资助金额:
$ 66.92万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10368975 - 财政年份:2021
- 资助金额:
$ 66.92万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10365254 - 财政年份:2021
- 资助金额:
$ 66.92万 - 项目类别:
Bone-Adipose Interactions During Skeletal Anabolism
骨骼合成代谢过程中骨-脂肪相互作用
- 批准号:
10202896 - 财政年份:2021
- 资助金额:
$ 66.92万 - 项目类别:
BCCMA: Foundational Research to Act Upon and Resist Conditions Unfavorable to Bone (FRACTURE CURB): Combined long-acting PTH and calcimimetics actions on skeletal anabolism
BCCMA:针对和抵抗不利于骨骼的条件的基础研究(遏制骨折):长效 PTH 和拟钙剂联合作用对骨骼合成代谢的作用
- 批准号:
10531570 - 财政年份:2021
- 资助金额:
$ 66.92万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10541847 - 财政年份:2019
- 资助金额:
$ 66.92万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10319573 - 财政年份:2019
- 资助金额:
$ 66.92万 - 项目类别:
Dissecting molecular mechanisms implicated in age- and osteoarthritis-related decline in anabolism in articular cartilage
剖析与年龄和骨关节炎相关的关节软骨合成代谢下降有关的分子机制
- 批准号:
10062790 - 财政年份:2019
- 资助金额:
$ 66.92万 - 项目类别:
Promotion of NAD+ anabolism to promote lifespan
促进NAD合成代谢以延长寿命
- 批准号:
DE170100628 - 财政年份:2017
- 资助金额:
$ 66.92万 - 项目类别:
Discovery Early Career Researcher Award