Predicting Short-Term Risk for Suicidal Behavior after Contact with Outpatient Specialists: A Machine Learning Approach

与门诊专家联系后预测自杀行为的短期风险:机器学习方法

基本信息

  • 批准号:
    10245124
  • 负责人:
  • 金额:
    $ 4.85万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-07-04 至 2022-07-03
  • 项目状态:
    已结题

项目摘要

Project Summary/Abstract Because suicidal behavior (i.e., suicide and suicide attempt) significantly contributes to global disease and financial burden, the National Action Alliance for Suicide Prevention, the World Health Organization, and prominent researchers have called for the need to develop and improve prediction models for suicidal behavior. The period after contact with a health care professional is a particularly high-risk period, suggesting that prediction of suicidal behavior in the short-term after contact (i.e., defined as within one year in most studies) would address a critical need in the field to aid intervention efforts. However, previous short-term research has been limited by numerous factors, including a lack of research on youth samples, an overreliance on self-report measures or electronic health records, and the frequent examination of bivariate associations between only one predictor and suicidal behavior. The overall objective of the current proposal is to utilize several algorithms and assess their relative performance in the prediction of short-term suicidal behavior after contact with an outpatient specialist (defined as within 1, 6, and 12 months) using an unparalleled dataset. I will use data from a prospective, large-scale register of all outpatient mental health specialist visits among youth in Stockholm County, Sweden, consisting of approximately 160,000 visits by the onset of the current award. These individuals can be linked to population-based registers assessing a broad range of information (e.g., medical problems, academic information, neighborhood factors, parental psychopathology), which is a significant advantage over prior literature primarily studying demographic and psychiatric predictors in isolation. The central hypothesis is that the examination of numerous predictors within a large sample and the use of advanced statistical methods will significantly improve upon previous suicidal behavior prediction, which has remained slightly above chance. To achieve the overall objective, the current proposal is designed to apply machine learning algorithms through two specific aims: Aim 1: Apply variable selection algorithms that determine a limited number of salient predictors and, therefore, maximize interpretability; Aim 2: Apply ensemble algorithms that aggregate machine learning models and, therefore, maximize predictive power. The current proposal will significantly contribute to the field by examining short-term risk using machine learning techniques among a youth, outpatient sample, including varying follow-up windows and predictors across domains. Finally, the results from the current proposal will have positive impact by informing both 1) basic research through the identification of at-risk subgroups based on numerous predictors, and 2) the creation of a prediction tool that will aid in clinical practice.
项目总结/摘要 因为自杀行为(即,自杀和自杀企图)在很大程度上导致了全球性疾病, 财政负担,国家预防自杀行动联盟,世界卫生组织, 著名的研究人员呼吁有必要开发和改进自杀的预测模型。 行为与医疗保健专业人员接触后的时期是一个特别高的风险时期,这表明 接触后短期内自杀行为的预测(即,在大多数情况下, 研究)将解决实地援助干预努力的迫切需要。不过,此前短期 研究受到许多因素的限制,包括缺乏对青年样本的研究,过度依赖 自我报告措施或电子健康记录,以及频繁检查双变量关联 只有一个预测因子和自杀行为之间的关系本提案的总体目标是利用 几种算法,并评估其在预测短期自杀行为后的相对性能 使用无与伦比的数据集与门诊专家(定义为1、6和12个月内)联系。我会 使用的数据来自一个前瞻性的,大规模的登记册的所有门诊心理健康专家访问的青年, 瑞典斯德哥尔摩县,由目前的奖项开始约160,000访问。 这些个人可以与评估广泛信息的人口登记册相联系(例如, 医疗问题,学术信息,邻里因素,父母的精神病理学),这是一个 显著优于先前文献,主要研究人口统计学和精神病学预测因素。 中心假设是,在一个大样本中检查众多的预测因子, 先进的统计方法将大大改善以前的自杀行为预测, 仍然略高于偶然性。为达致整体目标,本建议旨在 机器学习算法通过两个特定的目标:目标1:应用变量选择算法, 确定有限数量的突出预测因子,从而最大限度地提高可解释性;目标2:应用 集成算法,聚合机器学习模型,从而最大限度地提高预测能力。的 目前的提案将通过使用机器学习检查短期风险,为该领域做出重大贡献 在一个年轻的门诊样本中,包括不同的随访窗口和预测因素, 域.最后,当前提案的结果将产生积极影响,因为它将为以下两个方面提供信息:1)基本的 通过基于众多预测因素确定风险亚组进行研究,以及2)创建一个 预测工具,这将有助于临床实践。

项目成果

期刊论文数量(3)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
The intergenerational transmission of suicidal behavior: an offspring of siblings study.
自杀行为的代际传递:兄弟姐妹的后代研究。
  • DOI:
    10.1038/s41398-020-0850-6
  • 发表时间:
    2020
  • 期刊:
  • 影响因子:
    6.8
  • 作者:
    O'Reilly,LaurenM;Kuja-Halkola,Ralf;Rickert,MartinE;Class,QuetzalA;Larsson,Henrik;Lichtenstein,Paul;D'Onofrio,BrianM
  • 通讯作者:
    D'Onofrio,BrianM
{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Lauren Marie O'Reilly其他文献

Lauren Marie O'Reilly的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Lauren Marie O'Reilly', 18)}}的其他基金

Predicting Short-Term Risk for Suicidal Behavior after Contact with Outpatient Specialists: A Machine Learning Approach
与门诊专家联系后预测自杀行为的短期风险:机器学习方法
  • 批准号:
    9981424
  • 财政年份:
    2019
  • 资助金额:
    $ 4.85万
  • 项目类别:

相似海外基金

Co-designing a lifestyle, stop-vaping intervention for ex-smoking, adult vapers (CLOVER study)
为戒烟的成年电子烟使用者共同设计生活方式、戒烟干预措施(CLOVER 研究)
  • 批准号:
    MR/Z503605/1
  • 财政年份:
    2024
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Research Grant
Early Life Antecedents Predicting Adult Daily Affective Reactivity to Stress
早期生活经历预测成人对压力的日常情感反应
  • 批准号:
    2336167
  • 财政年份:
    2024
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Standard Grant
RAPID: Affective Mechanisms of Adjustment in Diverse Emerging Adult Student Communities Before, During, and Beyond the COVID-19 Pandemic
RAPID:COVID-19 大流行之前、期间和之后不同新兴成人学生社区的情感调整机制
  • 批准号:
    2402691
  • 财政年份:
    2024
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Standard Grant
Migrant Youth and the Sociolegal Construction of Child and Adult Categories
流动青年与儿童和成人类别的社会法律建构
  • 批准号:
    2341428
  • 财政年份:
    2024
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Standard Grant
Elucidation of Adult Newt Cells Regulating the ZRS enhancer during Limb Regeneration
阐明成体蝾螈细胞在肢体再生过程中调节 ZRS 增强子
  • 批准号:
    24K12150
  • 财政年份:
    2024
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Understanding how platelets mediate new neuron formation in the adult brain
了解血小板如何介导成人大脑中新神经元的形成
  • 批准号:
    DE240100561
  • 财政年份:
    2024
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Discovery Early Career Researcher Award
RUI: Evaluation of Neurotrophic-Like properties of Spaetzle-Toll Signaling in the Developing and Adult Cricket CNS
RUI:评估发育中和成年蟋蟀中枢神经系统中 Spaetzle-Toll 信号传导的神经营养样特性
  • 批准号:
    2230829
  • 财政年份:
    2023
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Standard Grant
Usefulness of a question prompt sheet for onco-fertility in adolescent and young adult patients under 25 years old.
问题提示表对于 25 岁以下青少年和年轻成年患者的肿瘤生育力的有用性。
  • 批准号:
    23K09542
  • 财政年份:
    2023
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Identification of new specific molecules associated with right ventricular dysfunction in adult patients with congenital heart disease
鉴定与成年先天性心脏病患者右心室功能障碍相关的新特异性分子
  • 批准号:
    23K07552
  • 财政年份:
    2023
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Issue identifications and model developments in transitional care for patients with adult congenital heart disease.
成人先天性心脏病患者过渡护理的问题识别和模型开发。
  • 批准号:
    23K07559
  • 财政年份:
    2023
  • 资助金额:
    $ 4.85万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了