Exploring the unknown protein universe using evolutionary information
利用进化信息探索未知的蛋白质宇宙
基本信息
- 批准号:10247669
- 负责人:
- 金额:$ 42.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-07 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AwardBiologyCodeCommunitiesDataDatabasesDiseaseDropsDrug TargetingEukaryotaEvolutionExpeditionsFacultyFamilyFutureGenesGenomeGenomicsGoalsHabitatsHomologous ProteinHumanInstitutionLeadLearningLifeMentorsMetagenomicsMicrobeModelingMolecularMutationNatural SelectionsNatureOrganPatternPersonsPhylogenetic AnalysisPrincipal InvestigatorProcessProtein EngineeringProtein FamilyProteinsPublic HealthResearchSamplingScienceSequence HomologyStatistical ModelsStructureSystemSystems BiologyTherapeuticTimeTrainingTreesViruscommunecomputerized toolscostdark matterexperienceexperimental studyimprovedinsightinterestmeetingsmetagenomemicrobiomeprotein complexprotein protein interactionprotein structureprotein structure predictionsingle cell sequencingskillssupportive environmentthree dimensional structuretraining opportunity
项目摘要
Project Summary/Abstract:
For billions of years, nature has been conducting the greatest experiment of all time.
Imagine one day gaining access to the detailed notes from these experiments. Today, with
worldwide expeditions to collect samples from all habitats, single-cell sequencing of
unculturable microbes and the rapid drop in sequencing costs, we can finally tap into nature and
gain access to these notes. All that is missing is a Rosetta Stone to interpret this data.
The traditional approach, to interpreting sequence data, is through comparison to known
information, such as annotated genomes and/or experimentally characterized protein families.
Unfortunately, nearly half of metagenomic data (coming from either environmental samples or
microbiomes) lacks any detectable sequence homology to any protein family, let alone to any
isolated genome. Furthermore, the rate at which this “dark matter” is discovered, far exceeds
the rate at which experiments can be done to characterize it.
An alternative approach is to learn a generative, statistical model of the evolutionary
process itself. The parameters of this model should in turn provide the constraints on natural
selection. For protein-coding genes, the constraints includes folding, stability, and function.
Recently, it was shown that a global statistical model of a protein family that captures both
conservation and coevolution patterns in the family possesses this quality. The strength of
coevolution term is correlated with residue-residue contacts in 3D structure. These contacts
have since been used to computationally determine the 3D structures of hundreds of unknown
protein families and complexes. These in turn, have been used to predict the function by looking
at arrangement of conserved residues and structural similarity to known protein structures.
Structural matches can occur in the absence of detectable sequence similarity because
structural similarity is retained over larger evolutionary distances.
I propose to 1) Develop an improved, unified, statistical model of protein evolution that
takes into account functional and lineage constraints; 2) Apply the model to mine metagenomic
“dark matter” sequences for new protein families, functions and protein-protein interactions; 3)
Probe evolution of multicellularity through comparison of structures and interactions in the early
tree of life. One of the results of the research will be a public database of new protein families
and their predicted 3D structure and function. These will be used by structural, molecular and
evolutionary biologists as a reference for future studies into the unknown protein universe.
项目总结/文摘:
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sergey L. Ovchinnikov其他文献
Sergey L. Ovchinnikov的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似国自然基金
Journal of Integrative Plant Biology
- 批准号:31024801
- 批准年份:2010
- 资助金额:24.0 万元
- 项目类别:专项基金项目
相似海外基金
An engineering biology approach for sustainable production of omega 3 and pigments from microalgae
一种利用微藻可持续生产 omega 3 和色素的工程生物学方法
- 批准号:
10107393 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Launchpad
FLF Next generation atomistic modelling for medicinal chemistry and biology
FLF 下一代药物化学和生物学原子建模
- 批准号:
MR/Y019601/1 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Fellowship
Sustainable Style for Clean Growth: Innovating Textile Production through Engineering Biology
清洁增长的可持续方式:通过工程生物学创新纺织品生产
- 批准号:
BB/Y007735/1 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Research Grant
Preventing Plastic Pollution with Engineering Biology (P3EB) Mission Hub
利用工程生物学 (P3EB) 任务中心预防塑料污染
- 批准号:
BB/Y007972/1 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Research Grant
GlycoCell Engineering Biology Mission Hub: Transforming glycan biomanufacture for health
GlycoCell 工程生物学任务中心:转变聚糖生物制造以促进健康
- 批准号:
BB/Y008472/1 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Research Grant
Postdoctoral Fellowship: STEMEdIPRF: Understanding instructor and student concepts of race to measure the prevalence of race essentialism in biology education
博士后奖学金:STEMEdIPRF:了解教师和学生的种族概念,以衡量生物教育中种族本质主义的流行程度
- 批准号:
2327488 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Standard Grant
CAREER: Hybridization and radiation: Integrating across phylogenomics, ancestral niche evolution, and pollination biology
职业:杂交和辐射:系统基因组学、祖先生态位进化和授粉生物学的整合
- 批准号:
2337784 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Continuing Grant
Collaborative Research: IMPLEMENTATION: Broadening participation of marginalized individuals to transform SABER and biology education
合作研究:实施:扩大边缘化个人的参与,以改变 SABER 和生物教育
- 批准号:
2334954 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Standard Grant
Collaborative Research: REU Site: Summer Undergraduate Research Program in RNA and Genome Biology (REU-RGB)
合作研究:REU 网站:RNA 和基因组生物学暑期本科生研究计划 (REU-RGB)
- 批准号:
2349255 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Continuing Grant
REU Site: Nature's machinery through the prism of Physics, Biology, Chemistry and Engineering
REU 网站:通过物理、生物、化学和工程学的棱镜观察自然的机器
- 批准号:
2349368 - 财政年份:2024
- 资助金额:
$ 42.25万 - 项目类别:
Standard Grant