Physical mechanisms of 3D cell motility
3D 细胞运动的物理机制
基本信息
- 批准号:10248353
- 负责人:
- 金额:$ 32.3万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-01 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAbnormal CellActomyosinAffectAnteriorArchitectureAutomobile DrivingBiophysicsCell CommunicationCell NucleusCell PolarityCell-Matrix JunctionCellsCellular biologyCharacteristicsCoupledCytoskeletonDermisDiffusionDiseaseElementsEnvironmentExtracellular MatrixExtracellular StructureFibroblastsFilamentGenerationsGoalsHumanIntegrinsIntermediate FilamentsLobopodiaMeasuresMechanical StressMicrofilamentsMolecularMovementMyosin Type IINeoplasm MetastasisNonmuscle Myosin Type IIBNormal CellNuclearPhysiological ProcessesPhysiologyPrimary NeoplasmProcessProductionProtein IsoformsRegulationResearch Project GrantsSignal TransductionSpecificityStructureTestingTissuesTractionTropomyosinTumor Cell InvasionVimentinWorkbasecell behaviorcell motilitycrosslinkdesigndirectional cellexperimental studyinsightlink proteinmigrationneoplastic cellnovelnovel strategiesnovel therapeutic interventionnovel therapeuticsphysical propertyplectinpolarized cellpressureresponsetherapy designthree dimensional structuretumorwound healing
项目摘要
Project Summary
Cell movement through three-dimensional (3D) extracellular matrix (ECM) is an essential component of normal
physiology and disease, including wound healing and tumor metastasis. Understanding how cells move
through structurally diverse 3D matrices will be essential to design therapies aimed at controlling cell migration
in the body. During 3D migration, both metastatic tumor cells and wound healing fibroblasts are faced with the
same problem: how to efficiently move the bulky, stiff nucleus. While the power of actomyosin contractility is
essential for cells to move their nuclei in 3D matrices, it is not understood how it is regulated by the ECM
structure or physically coupled to the nucleus. An additional layer of complexity comes from the fact that the 3D
matrix structure can govern actomyosin contractility to dictate the type of protrusions cells use to move (i.e.
migratory plasticity). By understanding how the structure of the 3D ECM affects the physical properties of the
nucleus and actomyosin contractility, we aim to create a conceptual framework to explain how and why human
cells switch between distinct 3D migration mechanisms. We recently discovered that human cells moving in a
linearly elastic 3D matrix rely on integrin-based cell-matrix adhesions and the power of actomyosin contractility
to pull the nucleus forward, like a piston, and switch from using low-pressure lamellipodia to high-pressure
lobopodial protrusions. This project will test the hypothesis that mechanical stress on the nucleus reprograms
intracellular architecture and polarity to power the nucleus, and thereby the cell through 3D matrices. To
achieve these goals, we will combine biophysical and cell biology approaches to measure mechanical stress
on the nucleus and determine the molecular connections between discreet cytoskeletal elements required for
high-pressure 3D motility. Aim 1 will manipulate the physical structures of the matrix and the nucleus and
measure the ability of the cells to assemble and activate the nuclear piston mechanism. This approach will
establish why the 3D matrix can reprogram cellular force production to switch cells to pressure-driven 3D
migration. Aim 2 will identify the actomyosin machinery that is specifically activated by 3D matrix-cell
interactions to generate pressure and govern migratory plasticity. These experiments will clearly distinguish the
actomyosin filaments responsible for pulling the nuclear piston forward from those that respond to matrix
stiffness by increasing traction force. Aim 3 will determine the mechanisms by which vimentin intermediate
filaments transmit force to the nucleus to sustain intracellular polarization and directional cell movement in the
narrow confines of the 3D matrix. These novel approaches will determine if the nucleus is a mechanosensor
that responds to 3D matrix structure by governing actomyosin contractility and the mode of 3D cell migration.
This enhanced understanding of the fundamental principles of directional 3D cell motility and migratory
plasticity will lead to new therapeutic strategies to control normal and abnormal cell movement in the body.
项目总结
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Ryan Petrie其他文献
Ryan Petrie的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Ryan Petrie', 18)}}的其他基金
相似海外基金
Mechanical sensing mechanism of abnormal cell clusters by surrounding normal cells
周围正常细胞对异常细胞簇的机械传感机制
- 批准号:
20K20189 - 财政年份:2020
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Rvb1 and Rvb2 are physically and functionally connected during normal and abnormal cell growth
Rvb1 和 Rvb2 在正常和异常细胞生长过程中在物理和功能上相连
- 批准号:
352398 - 财政年份:2016
- 资助金额:
$ 32.3万 - 项目类别:
"Born to be Bad": Is Abnormal Cell Mobility Already Present At Initiation?
“生来就是坏的”:异常的细胞迁移性是否在开始时就已经存在?
- 批准号:
8686657 - 财政年份:2014
- 资助金额:
$ 32.3万 - 项目类别:
Molecular mechanisms of abnormal cell proliferation in acute lymphoblastic leukemia of Down syndrome
唐氏综合征急性淋巴细胞白血病细胞异常增殖的分子机制
- 批准号:
23591527 - 财政年份:2011
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Analysis of abnormal cell polarity in brain tumor cells
脑肿瘤细胞异常细胞极性分析
- 批准号:
21591887 - 财政年份:2009
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Molecular mechanisms of abnormal cell proliferation in transient myeloproliferative disorder and acute megakaryoblastic leukemia of Down syndrome
唐氏综合症短暂性骨髓增生性疾病和急性巨核细胞白血病细胞异常增殖的分子机制
- 批准号:
20591241 - 财政年份:2008
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Role of cell adhesion signaling in the abnormal cell polarization of cancer cells
细胞粘附信号在癌细胞异常细胞极化中的作用
- 批准号:
17014055 - 财政年份:2005
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research on Priority Areas
Creation and analysis of animal model monitoring abnormal cell replication
监测异常细胞复制的动物模型的创建和分析
- 批准号:
16380194 - 财政年份:2004
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Cl^-homeostasis failure and abnormal cell migration by endocrine disruptor cause damage to nervous system
内分泌干扰物导致的Cl^-稳态失灵和异常细胞迁移导致神经系统损伤
- 批准号:
15590207 - 财政年份:2003
- 资助金额:
$ 32.3万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
ROLES OF PLEIOTROPHIN IN NORMAL AND ABNORMAL CELL GROWTH
多效素在正常和异常细胞生长中的作用
- 批准号:
2390859 - 财政年份:1995
- 资助金额:
$ 32.3万 - 项目类别:














{{item.name}}会员




