Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
基本信息
- 批准号:10246375
- 负责人:
- 金额:$ 32.54万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-01 至 2024-05-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAdhesionsAdhesivesBehaviorBindingBiologicalCase StudyCell AdhesionCell physiologyCellsCharacteristicsCollagenComputer ModelsDataDevelopmentDiseaseDisease ProgressionElasticityEnvironmentEvolutionExtracellular MatrixFeedbackFiberFibrosisFocal AdhesionsGelGenerationsGoalsGrowthHomeostasisIn VitroInvestigationLeadLigandsMalignant NeoplasmsMeasuresMechanicsModelingModulusMotorMusNaturePhasePhenotypePhysiologicalPolymersProcessRelaxationRoleRole ConceptsSeriesStressStretchingTestingTheoretical StudiesTheoretical modelTimeTissue ModelTissuesTractionViscosityWorkbasecell behaviorcellular imagingcrosslinkdesignexperimental studyfallsin vivoin vivo Modelinnovationmechanical propertiesmechanotransductionnetwork modelsresponsespatiotemporaltheoriesviscoelasticitywound healing
项目摘要
The role of mechanics in determining cell phenotype has been intensely studied since pioneering
studies showed that cells in culture respond to differences in the elastic modulus of their
environment. Stiffness sensing has been demonstrated in such varied settings as development,
cancer, wound healing and fibrosis. How cells sense stiffness remains unclear, partly because of a
lack of quantitative data that define exactly what cells sense, especially in vivo. In
particular, the nature of viscoelasticity and non-linear (strain-dependent) elasticity and
mechanical plasticity in normal and diseased tissues is insufficiently characterized, and the
contribution of these mechanical parameters to cell stiffness sensing and behavior is not
understood. This proposal extends studies of elasticity to encompass additional biologically
relevant parameters, with a focus on the role of dissipative processes, and offers the potential to
reevaluate current models of mechanobiology and develop new concepts of the role of time dependent
mechanics in biological contexts.
The proposed work builds on a series of our recent investigations where we have developed
theoretical models to describe the non-linear and dissipative behavior of fibrous ECMs
and stochastic models to analyze the dynamics of clutches (i.e., focal adhesions) formed
between the cell and a substrate. We propose to investigate the impact of ECM viscosity, plasticity
and non-linear elasticity on cell spreading and focal adhesion growth; specifically, to develop a
detailed understanding of the relationship between the competition between intrinsic cellular
timescales and characteristic timescales that determine the dissipative processes in the ECM, based
on the hypothesis that viscous and plastic dissipation can be as important as the well-studied case
of elastic moduli in determining cell response. We propose to a) Assess the role of viscous and
elastic constituents of a matrix on cellular mechanosensing, b) Model and measure the effect
of fiber realignment in collagen matrices on mechanosensing, adhesion dynamics, and
cellular behavior and c) Define the reciprocal relation between viscoplastic remodeling of
collagen networks and cellular mechanosensing.
自开创以来,力学在确定细胞表型中的作用已得到深入研究
研究表明,培养中的细胞对其弹性模量的差异做出反应
环境。刚度传感已在开发、
癌症、伤口愈合和纤维化。细胞如何感知硬度仍不清楚,部分原因是
缺乏准确定义细胞感知的定量数据,尤其是在体内。在
特别是粘弹性和非线性(应变相关)弹性的性质和
正常组织和患病组织的机械可塑性尚未得到充分表征,并且
这些机械参数对细胞刚度传感和行为的贡献不是
明白了。该提案扩展了弹性研究以涵盖更多的生物学
相关参数,重点关注耗散过程的作用,并提供了潜力
重新评估当前的机械生物学模型并发展时间依赖性作用的新概念
生物学背景下的力学。
拟议的工作建立在我们最近进行的一系列调查的基础上,我们在这些调查中开发了
描述纤维 ECM 非线性和耗散行为的理论模型
和随机模型来分析形成的离合器(即粘着斑)的动力学
位于细胞和基质之间。我们建议研究 ECM 粘度、塑性的影响
细胞扩散和粘着斑生长的非线性弹性;具体来说,开发一个
详细了解内在细胞之间的竞争关系
确定 ECM 中耗散过程的时间尺度和特征时间尺度,基于
假设粘性和塑性耗散与经过充分研究的案例一样重要
弹性模量在确定细胞反应中的作用。我们建议 a) 评估粘性和粘性的作用
基质的弹性成分对细胞机械传感的影响,b) 建模并测量效果
胶原基质中的纤维重新排列对机械传感、粘附动力学和
细胞行为和 c) 定义粘塑性重塑之间的相互关系
胶原蛋白网络和细胞机械传感。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Vivek Shenoy其他文献
Vivek Shenoy的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Vivek Shenoy', 18)}}的其他基金
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
10668320 - 财政年份:2020
- 资助金额:
$ 32.54万 - 项目类别:
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
10462741 - 财政年份:2020
- 资助金额:
$ 32.54万 - 项目类别:
Integration of elasticity, viscosity, and plasticity in cellular mechanosensing
细胞力传感中弹性、粘度和塑性的整合
- 批准号:
9973613 - 财政年份:2020
- 资助金额:
$ 32.54万 - 项目类别:
Uncovering mechanical mechanisms of traumatic axonal injury
揭示创伤性轴突损伤的机械机制
- 批准号:
9751855 - 财政年份:2016
- 资助金额:
$ 32.54万 - 项目类别:
相似海外基金
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y004841/1 - 财政年份:2024
- 资助金额:
$ 32.54万 - 项目类别:
Research Grant
Defining a role for non-canonical mTORC1 activity at focal adhesions
定义非典型 mTORC1 活性在粘着斑中的作用
- 批准号:
BB/Y001427/1 - 财政年份:2024
- 资助金额:
$ 32.54万 - 项目类别:
Research Grant
How tensins transform focal adhesions into fibrillar adhesions and phase separate to form new adhesion signalling hubs.
张力蛋白如何将粘着斑转化为纤维状粘连并相分离以形成新的粘连信号中枢。
- 批准号:
BB/Y005414/1 - 财政年份:2024
- 资助金额:
$ 32.54万 - 项目类别:
Research Grant
Development of a single-use, ready-to-use, sterile, dual chamber, dual syringe sprayable hydrogel to prevent postsurgical cardiac adhesions.
开发一次性、即用型、无菌、双室、双注射器可喷雾水凝胶,以防止术后心脏粘连。
- 批准号:
10669829 - 财政年份:2023
- 资助金额:
$ 32.54万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10587090 - 财政年份:2023
- 资助金额:
$ 32.54万 - 项目类别:
Improving Maternal Outcomes of Cesarean Delivery with the Prevention of Postoperative Adhesions
通过预防术后粘连改善剖宫产的产妇结局
- 批准号:
10821599 - 财政年份:2023
- 资助金额:
$ 32.54万 - 项目类别:
Regulating axon guidance through local translation at adhesions
通过粘连处的局部翻译调节轴突引导
- 批准号:
10841832 - 财政年份:2023
- 资助金额:
$ 32.54万 - 项目类别:
Prevention of Intraabdominal Adhesions via Release of Novel Anti-Inflammatory from Surface Eroding Polymer Solid Barrier
通过从表面侵蚀聚合物固体屏障中释放新型抗炎剂来预防腹内粘连
- 批准号:
10532480 - 财政年份:2022
- 资助金额:
$ 32.54万 - 项目类别:
I-Corps: A Sprayable Tissue-Binding Hydrogel to Prevent Postsurgical Cardiac Adhesions
I-Corps:一种可喷雾的组织结合水凝胶,可防止术后心脏粘连
- 批准号:
10741261 - 财政年份:2022
- 资助金额:
$ 32.54万 - 项目类别:
Sprayable Polymer Blends for Prevention of Site Specific Surgical Adhesions
用于预防特定部位手术粘连的可喷涂聚合物共混物
- 批准号:
10674894 - 财政年份:2022
- 资助金额:
$ 32.54万 - 项目类别:














{{item.name}}会员




