Creating an initial ethics framework for biomedical data modeling by mapping and exploring key decision points
通过映射和探索关键决策点,为生物医学数据建模创建初始伦理框架
基本信息
- 批准号:10250400
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-02 至 2021-09-03
- 项目状态:已结题
- 来源:
- 关键词:AccountabilityAddressAreaArtificial IntelligenceBig DataBioethical IssuesBioethicsBioethics ConsultantsCaringClinicalCommunitiesDataData ScienceData ScientistData SourcesDecision MakingDevelopmentElectronic Health RecordEnsureEthical IssuesEthical ReviewEthicsFocus GroupsFosteringGeneral PopulationHealthHealth ResourcesHealth systemIndividualInformaticsInterviewMachine LearningMapsMethodsMobile Health ApplicationModelingNational Health PolicyNatural Language ProcessingNatureOutputPatientsPersonsPlayPredictive AnalyticsProcessQualitative ResearchReproducibilityResearchResearch ActivityResearch MethodologyResearch PersonnelResource AllocationRoleServicesSocial EnvironmentStrategic PlanningStructureSystemTimeTrustUnited States National Institutes of HealthWalkingbasebiomedical data scienceclinical decision supportclinical decision-makingdata modelingdata qualitydata toolsethical legal social implicationgenomic datahigh standardimprovedindividual patientinformantinterestinteroperabilitymeetingsmodel developmentpatient populationpopulation healthprogramspublic trusttooltrendusability
项目摘要
Project Summary
Biomedical data science data modeling is relevant to a plethora of informatics research activities, such as
natural language processing, machine learning, artificial intelligence, and predictive analytics. As Electronic
Health Record systems become more advanced and more mature, with the potential to incorporate a wide and
diverse array of data from genomics to mobile health (mHealth) applications, the scope and nature of the
biomedical data science questions researchers ask become broader. Concomitantly, the answers to their
questions have the potential to impact the care of millions of patients—getting the answers right, proactively, is
high stakes. However, in data modeling currently, there is no bioethics framework to guide the process of
mapping key decision points and recording the rationale for choices made. Making data modeling decision
points, as well as the reasoning behind them, explicit would have a twofold impact on improving biomedical
data science by: 1. Enhancing transparency and reproducibility and maximizing the value of data science
research and 2. Supporting the ability to assess decision points and rationales in terms of their most crucial
ethical ramifications. Research in this area is particularly timely amid the interest in, and enthusiasm for,
leveraging Big Data sources in the service of improving patient population health and the health of the general
public. The National Institutes of Health (NIH) recently released a strategic plan for data science; there is no
better time than now to create an initial bioethical framework to inform common data modeling decision points.
The improvements in data quality that will derive from decision point mapping and bioethical review will
enhance efforts to apply data models across a range of high-impact areas, from predictive analytics to support
clinical decision-making to robust trending models in population health to better inform local, regional, and
national health policies and resource allocation. To develop this initial bioethics framework, we will use well-
established qualitative research methods (interviews, focus groups, and in-person deliberation) to map the
decision points in biomedical data modeling research and document the rationales invoked to support those
decisions (Aim 1 key informant interviews); assess those data science decision points and decision-making
rationales for their bioethical ramifications (Aim 2 focus groups); and create an initial bioethics data modeling
framework (Aim 3 deliberative meeting). This study would be the first to provide a bioethics framework to meet
a critical gap in biomedical data modeling activities, where the downstream consequences of developing data
models without careful and comprehensive review of ethical issues can be severe. This approach directly
supports core scientific values of inclusivity, transparency, accountability, and reproducibility that, in turn, foster
trust in biomedical data modeling output and potential applications, whether local, national, or global.
项目摘要
生物医学数据科学数据建模与大量信息研究活动有关,例如
自然语言处理,机器学习,人工智能和预测分析。作为电子
健康记录系统变得更加先进,更成熟,有可能结合范围的
从基因组学到移动健康(MHealth)应用程序的各种数据,范围和性质
生物医学数据科学问题研究人员提出的问题变得更广泛。同时,他们的答案
问题有可能影响数百万患者的护理 - 主动地确定答案是正确的
高赌注。但是,在当前数据建模中,没有生物伦理学框架可以指导该过程
绘制关键决策点并记录做出选择的理由。做出数据建模决策
点以及背后的推理,显式将对改善生物医学产生双重影响
数据科学作者:1。提高透明度和可重复性并最大化数据科学的价值
研究和2。支持评估决策点和理由的能力
道德后果。在对这一领域的研究尤其及时,在对,热情的兴趣和热情中
利用大数据源来改善患者人口健康和一般健康状况
民众。美国国立卫生研究院(NIH)最近发布了一项数据科学战略计划;没有
比现在更好的时间来创建一个初始的生物伦理框架,以告知通用数据建模决策点。
从决策点映射和生物伦理审查中得出的数据质量的改进将
从预测分析到支持
临床决策到人口健康中强大的趋势模型,以更好地告知本地,地区和
国家卫生政策和资源分配。为了开发这个最初的生物伦理学框架,我们将使用良好的
建立的定性研究方法(访谈,焦点小组和面对面的审议)来绘制
生物医学数据建模研究的决策点并记录了所援引的理由来支持那些
决策(AIM 1关键线人访谈);评估这些数据科学决策要点和决策
其生物伦理影响的理由(AIM 2焦点小组);并创建初始的生物伦理数据建模
框架(目标3审议会议)。这项研究将是第一个提供生物伦理学框架来满足的。
生物医学数据建模活动中的一个关键差距,在其中开发数据的下游后果
没有仔细且全面审查道德问题的模型可能很严重。这种方法直接
支持包容性,透明度,问责制和可重复性的核心科学价值,从而促进
对生物医学数据建模输出和潜在应用的信任,无论是本地,国家还是全球。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Considering the possibilities and pitfalls of Generative Pre-trained Transformer 3 (GPT-3) in healthcare delivery.
- DOI:10.1038/s41746-021-00464-x
- 发表时间:2021-06-03
- 期刊:
- 影响因子:15.2
- 作者:Korngiebel DM;Mooney SD
- 通讯作者:Mooney SD
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Diane M Korngiebel其他文献
Diane M Korngiebel的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Diane M Korngiebel', 18)}}的其他基金
Creating an initial ethics framework for biomedical data modeling by mapping and exploring key decision points
通过映射和探索关键决策点,为生物医学数据建模创建初始伦理框架
- 批准号:
10039527 - 财政年份:2020
- 资助金额:
-- - 项目类别:
Using Ethics and User-Centered Design to Create Templates for EHR-Mediated Return of Genetic Test Results
使用道德和以用户为中心的设计来创建 EHR 介导的基因检测结果返回模板
- 批准号:
9789346 - 财政年份:2018
- 资助金额:
-- - 项目类别:
Ethically responsible clinical decision support for Lynch Syndrome screening
林奇综合征筛查的道德责任临床决策支持
- 批准号:
8804136 - 财政年份:2014
- 资助金额:
-- - 项目类别:
Ethically responsible clinical decision support for Lynch Syndrome screening
林奇综合征筛查的道德责任临床决策支持
- 批准号:
9298688 - 财政年份:2014
- 资助金额:
-- - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
Environmental and Sanitation Improvements with mHealth
通过移动医疗改善环境和卫生
- 批准号:
10741398 - 财政年份:2023
- 资助金额:
-- - 项目类别:
The role of state agencies in mental health services for individuals with co-occurring intellectual and developmental disabilities and mental illness
国家机构在为同时患有智力和发育障碍以及精神疾病的个人提供心理健康服务方面的作用
- 批准号:
10534976 - 财政年份:2023
- 资助金额:
-- - 项目类别: