Cardiac CT Deblooming

心脏CT去晕

基本信息

  • 批准号:
    10250305
  • 负责人:
  • 金额:
    $ 97.81万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-01 至 2024-06-30
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Coronary artery disease (CAD) is the most common type of heart disease, killing over 370,000 Americans annu- ally2. Cardiac CT is a safe, accurate, non-invasive method widely employed for diagnosis of CAD and planning therapeutic interventions. With the current CT technology, calcium blooming artifacts severely limit the accuracy of coronary stenosis assessment. Similarly, stent blooming artifacts lead to overestimation of in-stent restenosis. As a result, many coronary CT angiography (CCTA) scans are non-diagnostic and result in patients receiving costly and invasive coronary angiography (ICA) procedures. Based on extensive feasibility results, the goal of this project is to use deep learning innovations to fundamen- tally eliminate blooming artifacts without costly redesign of the CT hardware. A consortium between GE Re- search, Rensselaer Polytechnic Institute and Weill Cornell Medicine will develop dedicated imaging protocols and machine learning methods to avoid or minimize blooming artifacts and evaluate the clinical impact of the proposed solutions. In Aim 1, the CT scan protocol will be optimized and paired with deep learning reconstruc- tion and post-processing algorithms to generate high-resolution CT images and prevent blooming artifacts. In Aim 2, image-domain and raw-data-domain deep learning processing algorithms will be developed to correct for residual blooming. After successful demonstration of the proposed methods on phantom scans and emulated clinical datasets, in Aim 3 the proposed CT methods will be clinically demonstrated and optimized based on 100 patients with coronary artery disease, using intravascular ultrasound as the ground-truth reference. At the end of the project, we will have demonstrated and publicly disseminated a systematic methodology to essentially remove blooming artifacts in cardiac CT without a costly hardware upgrade. This will be another suc- cess of deep learning, enabling accurate coronary stenosis assessment and eliminating many unnecessary diag- nostic catheterizations.
项目总结/摘要 冠状动脉疾病(CAD)是最常见的心脏病类型,每年有超过370,000名美国人死亡。 阿利2.心脏CT是一种安全、准确、无创的检查方法,广泛应用于CAD的诊断和制定手术计划 治疗干预。在当前的CT技术下,钙晕伪影严重限制了准确性 冠状动脉狭窄评估。同样,支架晕染伪影导致高估支架内再狭窄。 因此,许多冠状动脉CT血管造影(CCTA)扫描是非诊断性的,并导致患者接受 昂贵且有创的冠状动脉造影术(伊卡)。 基于广泛的可行性结果,该项目的目标是使用深度学习创新来奠定基础, 完全消除了模糊伪影,而无需重新设计CT硬件,成本高昂。GE Re- 搜索,伦斯勒理工学院和威尔康奈尔医学将开发专门的成像协议 和机器学习方法,以避免或最小化模糊伪影,并评估 建议的解决方案。在目标1中,CT扫描协议将得到优化,并与深度学习算法配对。 图像处理和后处理算法,以生成高分辨率CT图像并防止晕染伪影。在 目标2,将开发图像域和原始数据域深度学习处理算法, 残留晕染。在体模扫描和仿真上成功地演示了所提出的方法后, 在目标3中,将基于100个临床数据集对所提出的CT方法进行临床证明和优化, 冠状动脉疾病患者,使用血管内超声作为地面实况参考。 在项目结束时,我们将展示并公开传播一种系统性方法, 基本上消除了心脏CT中的模糊伪影,而无需昂贵的硬件升级。这将是另一个问题- 深度学习的成功,使准确的冠状动脉狭窄评估和消除许多不必要的诊断, 鼻导管插入术

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bruno De Man其他文献

Bruno De Man的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bruno De Man', 18)}}的其他基金

Constrained Disentanglement (CODE) Network for CT Metal Artifact Reduction in Radiation Therapy
用于减少放射治疗中 CT 金属伪影的约束解缠结 (CODE) 网络
  • 批准号:
    10184493
  • 财政年份:
    2021
  • 资助金额:
    $ 97.81万
  • 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
  • 批准号:
    10452540
  • 财政年份:
    2020
  • 资助金额:
    $ 97.81万
  • 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
  • 批准号:
    10674706
  • 财政年份:
    2020
  • 资助金额:
    $ 97.81万
  • 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
  • 批准号:
    10029731
  • 财政年份:
    2020
  • 资助金额:
    $ 97.81万
  • 项目类别:
Deviceless and Autonomous Prospective Cardiac CT Triggering
无设备和自主前瞻性心脏 CT 触发
  • 批准号:
    10227088
  • 财政年份:
    2020
  • 资助金额:
    $ 97.81万
  • 项目类别:
Open-access X-ray and CT simulation toolkit for research in cancer imaging and dosimetry
用于癌症成像和剂量测定研究的开放式 X 射线和 CT 模拟工具包
  • 批准号:
    9913492
  • 财政年份:
    2019
  • 资助金额:
    $ 97.81万
  • 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
  • 批准号:
    7792699
  • 财政年份:
    2010
  • 资助金额:
    $ 97.81万
  • 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
  • 批准号:
    8210901
  • 财政年份:
    2010
  • 资助金额:
    $ 97.81万
  • 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
  • 批准号:
    8706645
  • 财政年份:
    2010
  • 资助金额:
    $ 97.81万
  • 项目类别:
Cardiac CT: Advanced Architectures and Algorithms
心脏 CT:先进架构和算法
  • 批准号:
    8014879
  • 财政年份:
    2010
  • 资助金额:
    $ 97.81万
  • 项目类别:

相似海外基金

DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
  • 批准号:
    EP/Y029089/1
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
  • 批准号:
    2337776
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
  • 批准号:
    2338816
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
  • 批准号:
    2338846
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
  • 批准号:
    2348261
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
  • 批准号:
    2348346
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
  • 批准号:
    2348457
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
  • 批准号:
    2404989
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
  • 批准号:
    2339669
  • 财政年份:
    2024
  • 资助金额:
    $ 97.81万
  • 项目类别:
    Continuing Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了