Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
基本信息
- 批准号:10251076
- 负责人:
- 金额:$ 62.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-19 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesArchitectureAwarenessBig DataChromosome MappingChromosomesClinicalColorectal CancerCommunitiesComplexComputer softwareDNADNA DatabasesDataData AnalysesDetectionDiseaseDistantElectronic Health RecordEnvironmentExhibitsFamilyFrequenciesGene FrequencyGenesGeneticGenetic HeterogeneityGenetic RecombinationGenomic SegmentGenotypeHaplotypesHealthHeritabilityHeterogeneityIndividualLinkLinkage DisequilibriumMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of pancreasMapsMeasuresMethodologyMethodsModernizationMutationOutcomeOutputParticipantPathogenicityPatternPenetrancePhenotypePopulationPrivatizationResearchResource SharingResourcesSample SizeSideSoftware ToolsSusceptibility GeneVariantautomated analysisbasebiobankcancer predispositioncancer typecausal variantclinically significantdata repositorydetection methoddisorder riskfallsfollow-upgene discoverygenetic linkage analysisgenetic pedigreegenetic risk factorgenome wide association studygenome-widehuman diseaseidentity by descentimprovedinnovationmelanomanovelnovel strategiesphenomepower analysisrare cancerrare variantrepositoryrisk varianttargeted sequencingtooltrait
项目摘要
ABSTRACT
Despite decades of research, much of the genetic heritability of human disease remains unmapped to
susceptibility loci; and many gene-phenotype effects do not neatly fit the patterns of heterogeneity required for
well-powered analysis by GWAS nor family-based methods. Some genetic factors that contribute to disease
fall on a detectable, shared haplotypic background, yet have an appreciable population frequency due to
modest effects on disease risk. In such cases, analyses that utilize segmental sharing patterns in distant
relatives, such as identity-by-descent (IBD) mapping, are optimal for disease-gene discovery. This approach
has the advantage of allowing for: lower allele frequency of causal factors and higher allelic heterogeneity than
GWAS, and lower penetrance, more modest effect sizes, and higher genetic heterogeneity than linkage.
Additionally, the creation of large shared segment repositories allows for the identification of people who carry
haplotypes known to harbor rare risk variants, enabling efficient uses of targeted sequencing for evaluating the
effects of rare variants. Building on tools that we have developed as well as others', we propose the following
aims to leverage genetic relatedness estimation and shared segments in big data environments: 1) Create a
resource of shared segments in two large DNA biobanks. We will employ efficient and highly scalable
software architecture to automate analyses of relatedness from genetic data, including deep and accurate
relationship estimation and pedigree-aware shared segment detection across heterogeneous genetic data
types. Existing and novel approaches will be employed in BioVU and BioME, two large EHR-linked DNA
databanks to create shared segment repositories for use by the scientific community. Our analytic framework
will improve scalability and support a variety of standard output formats to integrate with downstream analyses.
2) IBD mapping phenome-wide. Shared segments provide an opportunity to recover power to detect a
tranche of disease-causing variants that contribute to the missing heritability of traits. Furthermore, we will
establish the effect of genetic dysregulation of genes in regions significantly enriched with shared segments
phenome-wide. 3) Demonstrate the utility of shared segments for identifying likely carriers of causal
variants in cancer predisposition genes. We will identify individuals in BioVU and BioME likely to harbor
pathogenic variants in known cancer predisposition genes by matching IBD segments shared between
biorepository participants and cancer cases sequenced at MD Anderson (N>10,000) and performing follow-up
genotyping of the loci to directly assess the clinical significance of the variants using the full EHR. Each aim
represents an innovative approach to data utilization in large EHR-linked DNA databanks, and the creation of
shared resources that will fuel future research. Collectively, our aims map a path towards efficient and
affordable novel disease-gene discovery using shared segments.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Below其他文献
Jennifer Below的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Below', 18)}}的其他基金
Multi-omics for obesity-associated liver disease discovery in Hispanics/Latinos: the Cameron County Hispanic Cohort
西班牙裔/拉丁裔肥胖相关肝病发现的多组学:卡梅伦县西班牙裔队列
- 批准号:
10744625 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Discovery and Characterization of Rare Variant Effects in Dilated Cardiomyopathy via Large-Scale Biobank Analysis
通过大规模生物库分析发现和表征扩张型心肌病的罕见变异效应
- 批准号:
10682290 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
9764749 - 财政年份:2019
- 资助金额:
$ 62.65万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
10021033 - 财政年份:2019
- 资助金额:
$ 62.65万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
10456944 - 财政年份:2019
- 资助金额:
$ 62.65万 - 项目类别:
Developmental stuttering: Population-based genetic discovery
发育性口吃:基于群体的遗传发现
- 批准号:
9982908 - 财政年份:2018
- 资助金额:
$ 62.65万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 62.65万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:














{{item.name}}会员




