Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
基本信息
- 批准号:10251076
- 负责人:
- 金额:$ 62.65万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-19 至 2023-07-31
- 项目状态:已结题
- 来源:
- 关键词:AffectAllelesArchitectureAwarenessBig DataChromosome MappingChromosomesClinicalColorectal CancerCommunitiesComplexComputer softwareDNADNA DatabasesDataData AnalysesDetectionDiseaseDistantElectronic Health RecordEnvironmentExhibitsFamilyFrequenciesGene FrequencyGenesGeneticGenetic HeterogeneityGenetic RecombinationGenomic SegmentGenotypeHaplotypesHealthHeritabilityHeterogeneityIndividualLinkLinkage DisequilibriumMalignant NeoplasmsMalignant neoplasm of ovaryMalignant neoplasm of pancreasMapsMeasuresMethodologyMethodsModernizationMutationOutcomeOutputParticipantPathogenicityPatternPenetrancePhenotypePopulationPrivatizationResearchResource SharingResourcesSample SizeSideSoftware ToolsSusceptibility GeneVariantautomated analysisbasebiobankcancer predispositioncancer typecausal variantclinically significantdata repositorydetection methoddisorder riskfallsfollow-upgene discoverygenetic linkage analysisgenetic pedigreegenetic risk factorgenome wide association studygenome-widehuman diseaseidentity by descentimprovedinnovationmelanomanovelnovel strategiesphenomepower analysisrare cancerrare variantrepositoryrisk varianttargeted sequencingtooltrait
项目摘要
ABSTRACT
Despite decades of research, much of the genetic heritability of human disease remains unmapped to
susceptibility loci; and many gene-phenotype effects do not neatly fit the patterns of heterogeneity required for
well-powered analysis by GWAS nor family-based methods. Some genetic factors that contribute to disease
fall on a detectable, shared haplotypic background, yet have an appreciable population frequency due to
modest effects on disease risk. In such cases, analyses that utilize segmental sharing patterns in distant
relatives, such as identity-by-descent (IBD) mapping, are optimal for disease-gene discovery. This approach
has the advantage of allowing for: lower allele frequency of causal factors and higher allelic heterogeneity than
GWAS, and lower penetrance, more modest effect sizes, and higher genetic heterogeneity than linkage.
Additionally, the creation of large shared segment repositories allows for the identification of people who carry
haplotypes known to harbor rare risk variants, enabling efficient uses of targeted sequencing for evaluating the
effects of rare variants. Building on tools that we have developed as well as others', we propose the following
aims to leverage genetic relatedness estimation and shared segments in big data environments: 1) Create a
resource of shared segments in two large DNA biobanks. We will employ efficient and highly scalable
software architecture to automate analyses of relatedness from genetic data, including deep and accurate
relationship estimation and pedigree-aware shared segment detection across heterogeneous genetic data
types. Existing and novel approaches will be employed in BioVU and BioME, two large EHR-linked DNA
databanks to create shared segment repositories for use by the scientific community. Our analytic framework
will improve scalability and support a variety of standard output formats to integrate with downstream analyses.
2) IBD mapping phenome-wide. Shared segments provide an opportunity to recover power to detect a
tranche of disease-causing variants that contribute to the missing heritability of traits. Furthermore, we will
establish the effect of genetic dysregulation of genes in regions significantly enriched with shared segments
phenome-wide. 3) Demonstrate the utility of shared segments for identifying likely carriers of causal
variants in cancer predisposition genes. We will identify individuals in BioVU and BioME likely to harbor
pathogenic variants in known cancer predisposition genes by matching IBD segments shared between
biorepository participants and cancer cases sequenced at MD Anderson (N>10,000) and performing follow-up
genotyping of the loci to directly assess the clinical significance of the variants using the full EHR. Each aim
represents an innovative approach to data utilization in large EHR-linked DNA databanks, and the creation of
shared resources that will fuel future research. Collectively, our aims map a path towards efficient and
affordable novel disease-gene discovery using shared segments.
摘要
尽管进行了几十年的研究,但人类疾病的大部分基因遗传性仍然没有被描绘出来
易感基因座;而且许多基因-表型效应并不完全符合
无论是以家庭为基础的方法,还是通过GWAS进行的有力的分析。一些导致疾病的遗传因素
落在可检测的共享单倍型背景上,但由于以下原因而具有明显的种群频率
对疾病风险的影响不大。在这种情况下,在远距离使用分段共享模式的分析
亲属关系,如按血统身份(IBD)作图,是疾病基因发现的最佳选择。这种方法
其优点是考虑到:因果因素的等位基因频率较低,等位基因异质性高于
外显性较低,效应大小适中,遗传异质性高于连锁。
此外,大型共享段存储库的创建允许识别携带
已知的单倍型含有罕见的风险变异,使得能够有效地使用靶向测序来评估
稀有变异的影响。在我们以及其他人开发的工具的基础上,我们建议如下
旨在利用大数据环境中的遗传相关性评估和共享区段:1)创建
两个大型DNA生物库中共享片段的资源。我们将采用高效且高度可扩展的
自动化遗传数据相关性分析的软件体系结构,包括深入和准确
跨异质遗传数据的关系估计和系谱感知共享片段检测
类型。现有的和新的方法将被应用于BioVU和Biome这两个与EHR相连的大型DNA
创建供科学界使用的共享片段储存库的数据库。我们的分析框架
将提高可伸缩性,并支持多种标准输出格式以与下游分析集成。
2)全现象的IBD定位。共享数据段提供了恢复电源以检测
导致性状遗传缺失的致病变异的一部分。此外,我们还将
在共享片段显著丰富的区域建立基因遗传失调的影响
全凤凰城。3)演示共享数据段在识别可能的因果携带者方面的效用
癌症易感基因的变异。我们将确定BioVU和生物群中可能藏匿的个人
通过匹配共享的IBD片段在已知癌症易感基因中的致病变异
在MD Anderson(N&>;10,000)对生物库参与者和癌症病例进行了测序,并进行了随访
使用完整的EHR对基因座进行基因分型,以直接评估变异的临床意义。每个目标
代表了一种在大型EHR链接的DNA数据库中利用数据的创新方法,并创建了
共享的资源将为未来的研究提供动力。总体而言,我们的目标规划了一条通往高效和
可负担得起的使用共享片段的新疾病基因发现。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Jennifer Below其他文献
Jennifer Below的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Jennifer Below', 18)}}的其他基金
Multi-omics for obesity-associated liver disease discovery in Hispanics/Latinos: the Cameron County Hispanic Cohort
西班牙裔/拉丁裔肥胖相关肝病发现的多组学:卡梅伦县西班牙裔队列
- 批准号:
10744625 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Discovery and Characterization of Rare Variant Effects in Dilated Cardiomyopathy via Large-Scale Biobank Analysis
通过大规模生物库分析发现和表征扩张型心肌病的罕见变异效应
- 批准号:
10682290 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
9764749 - 财政年份:2019
- 资助金额:
$ 62.65万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
10021033 - 财政年份:2019
- 资助金额:
$ 62.65万 - 项目类别:
Harnessing the power of genetic relatedness for disease gene discovery
利用遗传相关性的力量发现疾病基因
- 批准号:
10456944 - 财政年份:2019
- 资助金额:
$ 62.65万 - 项目类别:
Developmental stuttering: Population-based genetic discovery
发育性口吃:基于群体的遗传发现
- 批准号:
9982908 - 财政年份:2018
- 资助金额:
$ 62.65万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 62.65万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 62.65万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Studentship
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 62.65万 - 项目类别:














{{item.name}}会员




