Collaborative Research: Statistical Algorithms for Anomaly Detection and Patterns Recognition in Patient Care and Safety Event Reports
合作研究:患者护理和安全事件报告中异常检测和模式识别的统计算法
基本信息
- 批准号:10254593
- 负责人:
- 金额:$ 7.5万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2021-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdverse eventAdverse reactionsAlgorithmsArchitectureBehaviorCOVID-19 pandemicCaringCategoriesCause of DeathComputer softwareDataData ElementData SetData SourcesDatabasesDependenceDetectionDeteriorationDevicesDisease OutbreaksEnglish LanguageEnsureEquipmentEquipment MalfunctionEventGoalsHealthHealth care facilityHealthcareInstitute of Medicine (U.S.)Interest GroupInterventionInvestigationLeadLengthMeasuresMedicalMedical ErrorsMethodologyMethodsMiningModelingMonitorNatural Language ProcessingOperative Surgical ProceduresOutcomePathway AnalysisPathway interactionsPatient CarePatientsPattern RecognitionPharmaceutical PreparationsPrevalenceProcessPropertyQuality of CareRecordsReporterReportingResearchResearch PersonnelRiskSafetySeveritiesSideSiteStatistical AlgorithmStatistical ComputingStatistical MethodsStatistical ModelsSupervisionSystemTechniquesTextTimeTime trendUnited StatesVariantVocabularyadverse outcomebasecheckup examinationcluster computingcoronavirus diseasedosagehazardhealth care qualityhealth care servicehealth care service organizationimprovedinsightinterestmathematical modelnovelopen sourcepatient safetypoint of careresponseservice deliveryspatiotemporalstructured datatrendunstructured data
项目摘要
Project Summary
Medical errors have been shown to be the third leading cause of death in the United States. The Institute of
Medicine and several state legislatures have recommended the use of patient safety event reporting systems
(PSRS) to better understand and improve safety hazards. A patient safety event (PSE) report generally consists
of both structured and unstructured data elements. Structured data are pre-defined, fixed fields that solicit
specific information about the event. The unstructured data fields generally include a free text field where the
reporter can enter a text description of the event. The text descriptions are often a rich data source in that the
reporter is not constrained to limited categories or selection options and is able to freely describe the details of
the event.
The goal of this project is to develop novel statistical methods to analyze unstructured text like patient safety
event reports arising in healthcare, which can lead to significant improvements to patient safety and enable
timely intervention strategies. We address three problems: (a) Building realistic and meaningful baseline models
for near misses, and detecting systematic deterioration of adverse outcomes relative to such baselines; (b)
Understanding critical factors that lead to near misses & quantifying severity of outcomes; and (c) Identifying
document groups of interest. We will use novel statistical approaches that combine Natural Language
Processing with Statistical Process Monitoring, Statistical Networks Analysis, and Spatio-temporal Modeling to
build a generalizable toolbox that can address these issues in healthcare. We will also release open source
software via R packages & GitHub, which will enable healthcare staff and researchers to execute our methods
on their datasets.
The COVID-19 pandemic has resulted in increased patient volumes and increased patient acuity, leading to an
excessive burden on many healthcare facilities across the United States. This greatly increases the risk of patient
safety consequences arising from malfunctioning medical equipment or adverse reaction to medication. To
ensure patient safety and the highest quality of healthcare during this crisis, we need a rapid response system to
model and analyze COVID-specific safety issues at scale, and quickly disseminate the results to healthcare
facilities, so that these risks can be mitigated at the point of care. In this supplement, we propose to do this by
(a) mining public databases and EHRs to identify devices/medication being used for treating COVID and (b)
applying our methods (based on NLP, SPC, and SPM) to understand risks associated with these items. This
information will be disseminated nationally to all healthcare facilities so that it can be integrated into the EHR
at the point of care to alert clinicians.
项目摘要
医疗差错已被证明是美国第三大死因。美国国家科学研究院
医学和几个州立法机构建议使用患者安全事件报告系统
(PSR),以更好地了解和改善安全隐患。患者安全事件(PSE)报告通常包括
结构化数据元素和非结构化数据元素。结构化数据是预定义的固定字段,用于请求
有关活动的具体信息。非结构化数据字段通常包括自由文本字段,其中
记者可以输入事件的文本描述。文本描述通常是一个丰富的数据源,因为
记者不局限于有限的类别或选择选项,能够自由地描述
这件事。
这个项目的目标是开发新的统计方法来分析非结构化文本,如患者安全
医疗保健中产生的事件报告,这可以显著改善患者的安全并使
适时的干预策略。我们解决三个问题:(A)建立现实和有意义的基线模型
对于险些发生的失误,并检测到相对于这些基线的不利结果的系统性恶化;(B)
了解导致险些失手的关键因素并量化结果的严重性;以及(C)确定
记录感兴趣的组。我们将使用结合自然语言的新的统计方法
利用统计过程监控、统计网络分析和时空建模进行处理
构建一个可泛化的工具箱,以解决医疗保健中的这些问题。我们还将发布开源软件
通过R Packages和GitHub提供的软件,这将使医护人员和研究人员能够执行我们的方法
在他们的数据集上。
新冠肺炎大流行导致患者数量增加,患者敏锐度提高,导致
给美国各地的许多医疗机构带来了过重的负担。这极大地增加了患者的风险
医疗设备故障或药物不良反应引起的安全后果。至
在这场危机中确保患者安全和最高质量的医疗保健,我们需要一个快速反应系统来
对特定于COVID的安全问题进行大规模建模和分析,并将结果快速传播给医疗保健
设施,以便在护理时减轻这些风险。在本补充资料中,我们建议通过以下方式实现这一点
(A)挖掘公共数据库和电子病历,以确定用于治疗COVID的设备/药物,以及(B)
应用我们的方法(基于NLP、SPC和SPM)来了解与这些项目相关的风险。这
信息将在全国范围内传播到所有医疗机构,以便能够整合到电子健康记录中
在护理时提醒临床医生。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Allan Fong其他文献
Allan Fong的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Allan Fong', 18)}}的其他基金
Collaborative Research: Statistical algorithms for anomaly detection and patterns recognition in patient care and safety event reports
协作研究:患者护理和安全事件报告中异常检测和模式识别的统计算法
- 批准号:
9914443 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Collaborative Research: Statistical algorithms for anomaly detection and patterns recognition in patient care and safety event reports
协作研究:患者护理和安全事件报告中异常检测和模式识别的统计算法
- 批准号:
10211805 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
Collaborative Research: Statistical algorithms for anomaly detection and patterns recognition in patient care and safety event reports
协作研究:患者护理和安全事件报告中异常检测和模式识别的统计算法
- 批准号:
10242965 - 财政年份:2019
- 资助金额:
$ 7.5万 - 项目类别:
相似海外基金
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10707830 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Hospital characteristics and Adverse event Rate Measurements (HARM) Evaluated over 21 years.
医院特征和不良事件发生率测量 (HARM) 经过 21 年的评估。
- 批准号:
479728 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Operating Grants
Analysis of ECOG-ACRIN adverse event data to optimize strategies for the longitudinal assessment of tolerability in the context of evolving cancer treatment paradigms (EVOLV)
分析 ECOG-ACRIN 不良事件数据,以优化在不断发展的癌症治疗范式 (EVOLV) 背景下纵向耐受性评估的策略
- 批准号:
10884567 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
AE2Vec: Medical concept embedding and time-series analysis for automated adverse event detection
AE2Vec:用于自动不良事件检测的医学概念嵌入和时间序列分析
- 批准号:
10751964 - 财政年份:2023
- 资助金额:
$ 7.5万 - 项目类别:
Understanding the real-world adverse event risks of novel biosimilar drugs
了解新型生物仿制药的现实不良事件风险
- 批准号:
486321 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Studentship Programs
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10676786 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Pediatric Adverse Event Risk Reduction for High Risk Medications in Children and Adolescents: Improving Pediatric Patient Safety in Dental Practices
降低儿童和青少年高风险药物的儿科不良事件风险:提高牙科诊所中儿科患者的安全
- 批准号:
10440970 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Improving Adverse Event Reporting on Cooperative Oncology Group Trials
改进肿瘤学合作组试验的不良事件报告
- 批准号:
10642998 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Planar culture of gastrointestinal stem cells for screening pharmaceuticals for adverse event risk
胃肠道干细胞平面培养用于筛选药物不良事件风险
- 批准号:
10482465 - 财政年份:2022
- 资助金额:
$ 7.5万 - 项目类别:
Expanding and Scaling Two-way Texting to Reduce Unnecessary Follow-Up and Improve Adverse Event Identification Among Voluntary Medical Male Circumcision Clients in the Republic of South Africa
扩大和扩大双向短信,以减少南非共和国自愿医疗男性包皮环切术客户中不必要的后续行动并改善不良事件识别
- 批准号:
10191053 - 财政年份:2020
- 资助金额:
$ 7.5万 - 项目类别: