Revealing tissue microstructure in the brain gray matter in Alzheimer's disease using in vivo high-gradient diffusion MRI

使用体内高梯度扩散 MRI 揭示阿尔茨海默病大脑灰质的组织微观结构

基本信息

  • 批准号:
    10254657
  • 负责人:
  • 金额:
    $ 42万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2021
  • 资助国家:
    美国
  • 起止时间:
    2021-09-14 至 2026-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary/Abstract Alzheimer’s disease (AD) accounts for about 70% of dementia cases, and the number of AD patients continues to grow substantially due to the worldwide phenomenon of population aging, prompting the call for innovative technologies that will enable the early identification of patients at risk and monitoring of disease progression and therapeutic response. There is a known sequence of pathological alterations that develop in Alzheimer’s disease (AD) long before frank cognitive decline, offering potential targets for early detection of disease onset with subsequent interventions. While volumetric MRI changes are useful to assess the presence of neurodegeneration, regional cortical volume loss is a relatively late structural marker of neurodegeneration in AD. On the other hand, diffusion MRI (dMRI) is a non-invasive imaging technique sensitive to pathological changes on the cellular level, at least three orders of magnitude below the nominal spatial resolution of conventional MRI. So far, most AD studies using dMRI have largely focused on white matter changes. However, on histopathology, AD is primarily a cortical disease. The ability to probe early microstructural changes in GM in vivo would open the door to assessing disease onset and progression, facilitating the development of disease- modifying therapy. This project will bridge the gap in understanding changes in GM tissue microstructure in AD and mild cognitive impairment (MCI) using a combination of tools in multiple domains, such as biophysical modeling, ex vivo and in vivo dMRI, and histological validation. We will address this multi-faceted research challenge through the following aims: Aim 1: Establish time-dependent dMRI measurements to evaluate the density of axonal varicosities, size of cell body (soma), and soma/neurite density using a high-gradient MRI system. By leveraging the very strong diffusion gradients on the current and next-generation Connectome MRI scanner, we will develop a novel technique for evaluating the tissue microstructure in healthy subjects, AD and MCI patients. Aim 2: Validate in vivo and ex vivo dMRI measures of axonal and soma structure via Monte Carlo simulations of diffusion and histological analysis in three-dimensional realistic substrates based on light and electron microscopy, and micro-CT data. Aim 3: Assess the correlation of GM microstructural parameters with cognitive dysfunction, amyloid and tau PET scans, and blood and cerebrospinal fluid protein biomarkers, such as amyloid beta, total and phosphorylated tau (P-tau 181 and P-tau 217). In summary, building on our previous success in assessing white matter microstructure using dMRI, our study in GM promises to provide reliable noninvasive imaging markers of neurodegeneration, facilitating our understanding of the mechanisms underlying the progression of AD. Ultimately, the quantification of GM microstructure will offer prognostic and confirmatory biomarkers for neurodegenerative diseases, facilitating the assessment of treatment efficacy with the emergence of new therapies for AD and related dementias.
项目概要/摘要 阿尔茨海默病 (AD) 约占痴呆病例的 70%,且 AD 患者数量持续增加 由于世界范围内的人口老龄化现象,人口大幅增长,这促使人们呼唤创新 能够及早识别处于危险中的患者并监测疾病进展的技术 治疗反应。阿尔茨海默病中存在一系列已知的病理改变 (AD)早在明显的认知能力下降之前,就为早期发现疾病发作提供了潜在的目标 随后的干预。虽然体积 MRI 变化有助于评估是否存在 神经退行性变,区域皮质体积损失是神经退行性变的相对较晚的结构标志物 广告。另一方面,扩散磁共振成像(dMRI)是一种对病理学敏感的非侵入性成像技术。 细胞水平上的变化,至少比标称空间分辨率低三个数量级 常规 MRI。到目前为止,大多数使用 dMRI 的 AD 研究主要集中在白质变化上。然而, 在组织病理学上,AD主要是一种皮质疾病。能够探测 GM 的早期微观结构变化 vivo 将为评估疾病的发病和进展打开大门,促进疾病的发展- 修改治疗。该项目将弥合理解 AD 中 GM 组织微观结构变化的差距 和轻度认知障碍(MCI),使用多个领域的工具组合,例如生物物理 建模、离体和体内 dMRI 以及组织学验证。我们将进行多方面的研究 通过以下目标进行挑战: 目标 1:建立时间依赖性 dMRI 测量来评估 使用高梯度 MRI 测量轴突静脉曲张的密度、细胞体(胞体)的大小以及胞体/神经突密度 系统。通过利用当前和下一代连接体 MRI 上非常强的扩散梯度 扫描仪,我们将开发一种新技术来评估健康受试者、AD 和 MCI 患者。目标 2:通过蒙特卡罗验证轴突和体细胞结构的体内和离体 dMRI 测量 基于光和三维现实基质的扩散和组织学分析模拟 电子显微镜和显微 CT 数据。目标 3:评估 GM 微观结构参数与 认知功能障碍、淀粉样蛋白和 tau PET 扫描以及血液和脑脊液蛋白质生物标志物,例如 β 淀粉样蛋白、总 tau 蛋白和磷酸化 tau 蛋白(P-tau 181 和 P-tau 217)。 总之,基于我们之前使用 dMRI 评估白质微观结构的成功,我们 转基因研究有望提供可靠的神经退行性变无创成像标记物,促进我们的研究 了解 AD 进展的机制。最终,GM的量化 微观结构将为神经退行性疾病提供预后和确认性生物标志物,促进 随着 AD 和相关痴呆症新疗法的出现,评估治疗效果。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Hong Hsi Lee其他文献

Hong Hsi Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Hong Hsi Lee', 18)}}的其他基金

Revealing tissue microstructure in the brain gray matter in Alzheimer's disease using in vivo high-gradient diffusion MRI
使用体内高梯度扩散 MRI 揭示阿尔茨海默病大脑灰质的组织微观结构
  • 批准号:
    10488630
  • 财政年份:
    2021
  • 资助金额:
    $ 42万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 42万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了