Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
基本信息
- 批准号:10255795
- 负责人:
- 金额:$ 148.84万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-10 至 2024-08-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAnimal ModelAnimalsArchitectureCaliberCellsChronicCicatrixClinical ResearchClinical TrialsCustomDataDevelopmentDevicesElectrodesElectronicsEnsureEpilepsyEvaluationExcisionFeedbackForeign BodiesFreedomFutureGeometryGoalsHistologyHumanImplantImplantation procedureInstitutional Review BoardsInvestigationLengthLocked-In SyndromeMedical DeviceMethodsMicroelectrodesModelingMonitorOperative Surgical ProceduresPatientsPhaseProcessRattusRecoverySamplingSeriesSheepSmall Business Innovation Research GrantSupport SystemSurfaceSystemTechnologyTestingTimeTissuesTranslationsUnited States National Institutes of HealthWidthbasebrain computer interfaceclinical applicationclinical translationcohortdensitydesigngood laboratory practicehuman tissueimplantationimprovedin vivoinnovationmedical implantmeetingsneuron lossnovelphase 2 studypreclinical studyrelating to nervous systemresponsesafety studysensorsheep modeltooltranslation to humans
项目摘要
PROJECT SUMMARY
Paradromics is developing high data rate brain computer interface technologies as a platform for medical
device applications. In our Phase I SBIR, we designed, built, and tested a neural recording system based on
massively parallel microwire electrode arrays bonded to CMOS readout electronics. That system supports up
to 65,536 active electrode channels sampled simultaneously at over 32,000 Hz. We used this system to record
action potentials from arrays of up to 1200 microelectrodes in rats (penetrating, 1mm depth) and local field
potentials from >30,000 microelectrodes in sheep (surface). This serves as a demonstration of the microwire-
to-CMOS bonding architecture that will form the core of our next device, a medical implant.
For this new implantable medical device, we have developed a new and substantially improved method of
electrode array fabrication. This method produces more ordered, regular arrays through Electrical Discharge
Machining (EDM), thus improving on the stochastic connections of the bundle architecture from Phase I with
the ability to be produced under GMP. A new, custom CMOS sensor, also developed following the NIH SBIR
Phase I effort, performs compressive sensing of neural data to reduce power and data requirements in the
future device.
As we prepare to build this implantable medical device and take it to market, it is critical to extensively test the
insertion reliability of different arrays designs in order to produce a device best optimized for insertion and
recording. Here we propose to use passive arrays of 400-1600 electrodes, smaller than our Phase I approach,
to find the optimal electrode array design for clinical translation. We will test array designs that can reliably
insert into the sheep cortex, validate the insertion of that array in human tissue intraoperatively (under IRB),
and evaluate the tissue response to the array over a period of up to 6 months, implanted chronically in sheep.
The overall goal for the future array is to ensure that we can reliably insert the array with the smallest shank
width to mitigate the chronic foreign body response at an appropriate pitch (100 - 400 μm) and length (i.e. 1
mm) suitable for the human cortex.
Moreover, this data will also be critical for designing certified GLP studies, and for planning conversations with
the FDA for pre-IDE meetings, where we will need a finalized array design and testing plan in place.
The aims of this Direct to Phase II study are as follows:
Specific Aim (SA) 1: Determine optimal microelectrode array design and validate implantation in sheep
and human cortical tissue intraoperatively with passive arrays of 400-1600 electrodes. We aim to better
understand how the geometric parameters of high density microwire electrode arrays impact insertion reliability
into cortical tissue in vivo in an ovine (sheep) model (SA 1.1), with refined geometries implanted intraoperatively
into human cortex (SA 1.2).
Specific Aim 2: Determine long-term viability of implanted, passive arrays in sheep. . We will determine
the long-term viability of our high-density array by chronically implanting the passive arrays in sheep. Animals
will be implanted over 4, 8, 12, and 24 weeks. The degree of glial scarring and neuron loss will be compared
around electrodes between high-density and commercial arrays over these timepoints.
项目摘要
Paradromics正在开发高数据率脑机接口技术,作为医疗平台。
设备应用。在我们的第一阶段SBIR中,我们设计、构建并测试了一个基于
大规模平行微丝电极阵列键合到CMOS读出电子器件。该系统支持
至65,536个有效电极通道,以超过32,000 Hz的频率同时采样。我们用这个系统来记录
大鼠中多达1200个微电极阵列的动作电位(穿透,1 mm深度)和局部场
来自绵羊(表面)中> 30,000个微电极的电位。这是一个微型导线的示范
到CMOS键合架构,将形成我们的下一个设备,医疗植入的核心。
对于这种新的植入式医疗设备,我们已经开发了一种新的和实质性改进的方法,
电极阵列制造。该方法通过放电产生更有序、规则的阵列
加工(EDM),从而改善了第一阶段的束结构的随机连接,
能够按照GMP生产。一种新的定制CMOS传感器,也是在NIH SBIR之后开发的
第一阶段的努力,执行压缩感测的神经数据,以减少电力和数据的要求,
未来的设备
当我们准备制造这种植入式医疗设备并将其推向市场时,
不同阵列设计的插入可靠性,以便生产最佳插入优化的装置,
录制.在这里,我们建议使用400-1600个电极的无源阵列,比我们的第一阶段方法小,
以找到用于临床转化的最佳电极阵列设计。我们将测试阵列设计,
插入绵羊皮层,在手术中验证该阵列插入人体组织(在IRB下),
并在长达6个月的时间内评价对阵列的组织反应,将其长期植入绵羊体内。
未来阵列的总体目标是确保我们能够用最小的柄可靠地插入阵列
在适当间距(100 - 400 μm)和长度(即1
mm)适合于人类皮层。
此外,这些数据对于设计经认证的GLP研究以及计划与
FDA的IDE前会议,我们将需要一个最终的阵列设计和测试计划到位。
本直接进入II期研究的目的如下:
特定目的(SA)1:确定最佳微电极阵列设计并确认绵羊体内植入
和手术中使用400-1600个电极的无源阵列的人皮质组织。我们的目标是更好地
了解高密度微丝电极阵列的几何参数如何影响插入可靠性
在绵羊模型(SA 1.1)中植入体内皮质组织,术中植入精细几何结构
进入人类皮层(SA 1.2)。
具体目标2:确定绵羊体内植入的无源阵列的长期生存能力。.我们将确定
我们的高密度阵列的长期生存能力,通过长期植入被动阵列在羊。动物
将在4、8、12和24周内植入。将比较神经胶质瘢痕形成和神经元丢失的程度
在这些时间点上,高密度和商业阵列之间的电极周围。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Angle其他文献
The Argo: A 65,536 channel recording system for high density neural recording in vivo
Argo:用于体内高密度神经记录的 65,536 通道记录系统
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kunal Sahasrabuddhe;A. Khan;Aditya P Singh;Tyler M Stern;Yeena Ng;Aleksandar Tadić;P. Orel;Chris LaReau;Daniel Pouzzner;Kurtis Nishimura;K. Boergens;Sashank Shivakumar;Matthew S Hopper;Bryan Kerr;Mina;Robert J Edgington;Ingrid McNamara;Devin Fell;P. Gao;Amir Babaie;S. Veijalainen;A. Klekachev;Alison M. Stuckey;B. Luyssaert;Takashi D. Y. Kozai;Chong Xie;V. Gilja;B. Dierickx;Yifan Kong;M. Straka;H. Sohal;Matthew R Angle - 通讯作者:
Matthew R Angle
Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model
激光消融软脑膜,在平移羊模型中插入高密度微电极阵列
- DOI:
10.1088/1741-2552/ac0585 - 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
K. Boergens;Aleksandar Tadić;Matthew S. Hopper;Ingrid McNamara;Devin Fell;Kunal Sahasrabuddhe;Yifan Kong;M. Straka;H. Sohal;Matthew R Angle - 通讯作者:
Matthew R Angle
Matthew R Angle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Angle', 18)}}的其他基金
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
- 批准号:
10483140 - 财政年份:2021
- 资助金额:
$ 148.84万 - 项目类别:
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
- 批准号:
10698164 - 财政年份:2021
- 资助金额:
$ 148.84万 - 项目类别:
Commercial development of microwire bundle technology for massively parallel neural recording.
用于大规模并行神经记录的微线束技术的商业开发。
- 批准号:
9254605 - 财政年份:2016
- 资助金额:
$ 148.84万 - 项目类别:
相似海外基金
Quantification of Neurovasculature Changes in a Post-Hemorrhagic Stroke Animal-Model
出血性中风后动物模型中神经血管变化的量化
- 批准号:
495434 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Small animal model for evaluating the impacts of cleft lip repairing scar on craniofacial growth and development
评价唇裂修复疤痕对颅面生长发育影响的小动物模型
- 批准号:
10642519 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Bioactive Injectable Cell Scaffold for Meniscus Injury Repair in a Large Animal Model
用于大型动物模型半月板损伤修复的生物活性可注射细胞支架
- 批准号:
10586596 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
A Comparison of Treatment Strategies for Recovery of Swallow and Swallow-Respiratory Coupling Following a Prolonged Liquid Diet in a Young Animal Model
幼年动物模型中长期流质饮食后吞咽恢复和吞咽呼吸耦合治疗策略的比较
- 批准号:
10590479 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Diurnal grass rats as a novel animal model of seasonal affective disorder
昼夜草鼠作为季节性情感障碍的新型动物模型
- 批准号:
23K06011 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Longitudinal Ocular Changes in Naturally Occurring Glaucoma Animal Model
自然发生的青光眼动物模型的纵向眼部变化
- 批准号:
10682117 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
A whole animal model for investigation of ingested nanoplastic mixtures and effects on genomic integrity and health
用于研究摄入的纳米塑料混合物及其对基因组完整性和健康影响的整体动物模型
- 批准号:
10708517 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
A Novel Large Animal Model for Studying the Developmental Potential and Function of LGR5 Stem Cells in Vivo and in Vitro
用于研究 LGR5 干细胞体内外发育潜力和功能的新型大型动物模型
- 批准号:
10575566 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Elucidating the pathogenesis of a novel animal model mimicking chronic entrapment neuropathy
阐明模拟慢性卡压性神经病的新型动物模型的发病机制
- 批准号:
23K15696 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
The effect of anti-oxidant on swallowing function in an animal model of dysphagia
抗氧化剂对吞咽困难动物模型吞咽功能的影响
- 批准号:
23K15867 - 财政年份:2023
- 资助金额:
$ 148.84万 - 项目类别:
Grant-in-Aid for Early-Career Scientists