Commercial development of microwire bundle technology for massively parallel neural recording.
用于大规模并行神经记录的微线束技术的商业开发。
基本信息
- 批准号:9254605
- 负责人:
- 金额:$ 39.85万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2016
- 资助国家:美国
- 起止时间:2016-04-05 至 2018-03-31
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsArchitectureBrainCaliberCollaborationsCommunitiesComplexComputer softwareDataData AnalysesData Storage and RetrievalDepositionDevelopmentDevicesElectrodesElectronicsFaceFilmFundingGlassGoalsHairHeadHealth behaviorHumanImageIndividualIndustryInternationalIntuitionLaboratoriesLaboratory ResearchLightMeasuresMechanicsMetalsMethodsMicroelectrodesNeuronsNeurosciencesOptical MethodsOutputPartner in relationshipPolishesPriceProbabilityProcessReproducibilityResearchResolutionSamplingSemiconductorsSeriesSiliconSiteSpeedSurfaceSystemTechniquesTechnologyThinnessTimeUniversitiesWorkarmbasebrain tissuedata acquisitiondesignexperimental studyflexibilityflexible electronicsimprovedin vivoinnovationmicromanipulatormulti-electrode arraysneural circuitnovel strategiesopen sourceprototypepublic health relevancerelating to nervous systemscale upsensortoolvoltage
项目摘要
DESCRIPTION (provided by applicant): This proposal describes a novel approach for recording from tens of thousands of neurons simultaneously using bundles of microwires that are each smaller than a human hair. To accomplish this, thousands of microwires are bundled together, with one end being inserted into the brain and the other being bonded to a high-speed image sensor chip that reads out the voltages on each wire. The sensor output can then be acquired to a PC using standard frame-grabber technology. This approach was developed as part of an international collaboration between the research laboratories of Andreas Schaefer (UCL, UK) and Nicholas Melosh (Stanford University, CA). The company Paradromics was created specifically to develop the academic prototype system into a robust commercial product. Significance - Neural circuits are composed of many thousands of neurons, and information is encoded within these networks by the relative timing of action potentials (1-4). In order to understand how neural circuits behave and how they impact human health and behavior, new techniques are necessary that can resolve the individual spiking activity of many thousands of neurons simultaneously (2, 5, 6). Here we propose a technology that is not only capable of sampling tens of thousands of channels, but can do so in vivo, at depths where non-invasive optical methods are infeasible. Innovation - Our approach is innovative because it combines two highly scalable technologies for the first time ever: high resolution CMOS camera sensors and microwire bundles (7). Our prototype device uses bundles of tens of thousands of wires, and a 640x512 sensor chip (8), but in principle we can scale up both bundles and sensors to millions of channels without any architectural changes. Approach - Here we propose to turn an exciting new laboratory prototype into a turnkey research tool for neuroscience labs around the world. To accomplish this, we propose a series of simple but important improvements to our existing prototype system that will enable us to increase the number of available recording channels by drastically improving bundle-sensor connectivity. We also propose to develop data acquisition software that will make using the system as simple and intuitive as possible. Market - We estimate there are approximately 5,000 active multi-channel recording systems, each with an average less than 100 channels. Our first product will have > 300,000 channels. Two of our systems will therefore be capable of recording from more neurons simultaneously than all of the other multi- channel recording systems in the world combined. Further, because we are harnessing already- developed CMOS technology, we think that we can provide these systems for a price comparable to existing multi-channel recording systems from major suppliers.
描述(由申请人提供):该提案描述了一种新颖的方法,用于使用每束比人的头发还小的微丝束同时记录数万个神经元。为了实现这一点,数千根微导线被捆绑在一起,一端插入大脑,另一端连接到高速图像传感器芯片,该芯片读取每条导线上的电压。传感器输出可以通过标准的帧采集卡技术传输到PC。这种方法是作为Andreas Schaefer(UCL,UK)和Nicholas Melosh(斯坦福大学,CA)研究实验室之间国际合作的一部分开发的。Paradromics公司是专门为将学术原型系统开发成强大的商业产品而创建的。神经回路由成千上万的神经元组成,信息在这些网络中通过动作电位的相对时序进行编码(1-4)。为了了解神经回路的行为以及它们如何影响人类健康和行为,需要新的技术来同时解决数千个神经元的单个尖峰活动(2,5,6)。在这里,我们提出了一种技术,不仅能够采样成千上万的通道,但可以在体内,在深度的非侵入性光学方法是不可行的。创新-我们的方法是创新的,因为它首次结合了两种高度可扩展的技术:高分辨率CMOS相机传感器和微线束(7)。我们的原型设备使用数万根电线和640 x512传感器芯片,但原则上我们可以将线束和传感器扩展到数百万个通道,而无需任何架构更改。方法-在这里,我们建议将一个令人兴奋的新实验室原型变成全世界神经科学实验室的交钥匙研究工具。为了实现这一目标,我们提出了一系列简单但重要的改进,我们现有的原型系统,这将使我们能够增加可用的记录通道的数量,通过大幅提高传感器的连接。我们还建议开发数据采集软件,使系统的使用尽可能简单和直观。市场-我们估计大约有5,000个活跃的多通道录音系统,每个系统平均不到100个通道。我们的第一款产品将拥有超过30万个频道。因此,我们的两个系统将能够同时记录更多的神经元,而不是世界上所有其他多通道记录系统的总和。此外,由于我们正在利用已经开发的CMOS技术,我们认为我们可以提供这些系统的价格与现有的多通道记录系统从主要供应商。
项目成果
期刊论文数量(1)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(1)
The Argo: a high channel count recording system for neural recording in vivo.
Argo:用于体内神经记录的高通道计数记录系统。
- DOI:10.1088/1741-2552/abd0ce
- 发表时间:2021-02-24
- 期刊:
- 影响因子:4
- 作者:Sahasrabuddhe K;Khan AA;Singh AP;Stern TM;Ng Y;Tadić A;Orel P;LaReau C;Pouzzner D;Nishimura K;Boergens KM;Shivakumar S;Hopper MS;Kerr B;Hanna MS;Edgington RJ;McNamara I;Fell D;Gao P;Babaie-Fishani A;Veijalainen S;Klekachev AV;Stuckey AM;Luyssaert B;Kozai TDY;Xie C;Gilja V;Dierickx B;Kong Y;Straka M;Sohal HS;Angle MR
- 通讯作者:Angle MR
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Matthew R Angle其他文献
The Argo: A 65,536 channel recording system for high density neural recording in vivo
Argo:用于体内高密度神经记录的 65,536 通道记录系统
- DOI:
- 发表时间:
2020 - 期刊:
- 影响因子:0
- 作者:
Kunal Sahasrabuddhe;A. Khan;Aditya P Singh;Tyler M Stern;Yeena Ng;Aleksandar Tadić;P. Orel;Chris LaReau;Daniel Pouzzner;Kurtis Nishimura;K. Boergens;Sashank Shivakumar;Matthew S Hopper;Bryan Kerr;Mina;Robert J Edgington;Ingrid McNamara;Devin Fell;P. Gao;Amir Babaie;S. Veijalainen;A. Klekachev;Alison M. Stuckey;B. Luyssaert;Takashi D. Y. Kozai;Chong Xie;V. Gilja;B. Dierickx;Yifan Kong;M. Straka;H. Sohal;Matthew R Angle - 通讯作者:
Matthew R Angle
Laser ablation of the pia mater for insertion of high-density microelectrode arrays in a translational sheep model
激光消融软脑膜,在平移羊模型中插入高密度微电极阵列
- DOI:
10.1088/1741-2552/ac0585 - 发表时间:
2020 - 期刊:
- 影响因子:4
- 作者:
K. Boergens;Aleksandar Tadić;Matthew S. Hopper;Ingrid McNamara;Devin Fell;Kunal Sahasrabuddhe;Yifan Kong;M. Straka;H. Sohal;Matthew R Angle - 通讯作者:
Matthew R Angle
Matthew R Angle的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Matthew R Angle', 18)}}的其他基金
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
- 批准号:
10255795 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
- 批准号:
10483140 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
Development and evaluation of novel high-density intracortical microelectrode arrays for clinical applications
临床应用新型高密度皮质内微电极阵列的开发和评估
- 批准号:
10698164 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
相似海外基金
Conference: 2023 Neuroethology: Behavior, Evolution and Neurobiology GRC Linking Diversity in Cells, Circuits, and Brain Architecture to Ecologically Relevant Behaviors
会议:2023 年神经行为学:行为、进化和神经生物学 GRC 将细胞、回路和大脑结构的多样性与生态相关行为联系起来
- 批准号:
2334509 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别:
Standard Grant
Genetic architecture of brain evolution during ecological divergence
生态分化期间大脑进化的遗传结构
- 批准号:
NE/W010011/1 - 财政年份:2023
- 资助金额:
$ 39.85万 - 项目类别:
Research Grant
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2022
- 资助金额:
$ 39.85万 - 项目类别:
Discovery Grants Program - Individual
CCF: Small: Paradox and Brain-inspired Computer Architecture
CCF:小型:悖论和受大脑启发的计算机架构
- 批准号:
2204780 - 财政年份:2022
- 资助金额:
$ 39.85万 - 项目类别:
Standard Grant
Analysis of The Role of Network Architecture and Stimuli Properties in The Brain Functional Control
网络架构和刺激特性在大脑功能控制中的作用分析
- 批准号:
572676-2022 - 财政年份:2022
- 资助金额:
$ 39.85万 - 项目类别:
University Undergraduate Student Research Awards
Understanding the molecular and functional architecture of diverse body-brain pathways
了解不同体脑通路的分子和功能结构
- 批准号:
10503462 - 财政年份:2022
- 资助金额:
$ 39.85万 - 项目类别:
Understanding the impact of capillary obstructions on brain angio-architecture and function
了解毛细血管阻塞对脑血管结构和功能的影响
- 批准号:
RGPIN-2019-06399 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
Discovery Grants Program - Individual
Impact of Reproductive Aging on the Functional and Structural Architecture of the Human Brain
生殖衰老对人脑功能和结构的影响
- 批准号:
10313384 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
How the 3D architecture of the brain shapes cancer cell fate decisions
大脑的 3D 结构如何影响癌细胞的命运决定
- 批准号:
10245406 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
The genetic architecture and functional role of the mitochondrial transcriptome in the Human Brain
人脑线粒体转录组的遗传结构和功能作用
- 批准号:
2546794 - 财政年份:2021
- 资助金额:
$ 39.85万 - 项目类别:
Studentship














{{item.name}}会员




