Developing an Unbiased Machine Learning Tool for Prediction of Acute Coronary Syndrome
开发用于预测急性冠状动脉综合征的无偏差机器学习工具
基本信息
- 批准号:10258045
- 负责人:
- 金额:$ 25.66万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-09-18 至 2022-03-31
- 项目状态:已结题
- 来源:
- 关键词:Acute Coronary EventAddressAdoptionAgeAreaArtificial IntelligenceCaliforniaClinicalDataData AnalysesData CollectionData SetDetectionDevelopmentDiagnosisEarly DiagnosisElectronic Health RecordEmergency Department patientEnsureEvaluationFatigueFeedbackFemaleFutureGenderHospitalsIndividualInpatientsLeadLength of StayMachine LearningMeasurementMeasuresMethodsMind-Body MethodModelingMyocardial InfarctionOutcomePatient-Focused OutcomesPatientsPerformancePhysiciansPlatelet Glycoprotein GPIIb-IIIa ComplexPlatelet GlycoproteinsPlayPopulationProbabilityROC CurveRaceRegistriesResearchResource AllocationRiskRoleSCAP2 geneSan FranciscoSchemeSeveritiesSex BiasSex DifferencesSystemTechnologyTestingTimeTrainingTreesUniversitiesUnstable anginaWeightWomanWorkacute careacute coronary syndromeage groupalgorithm developmentalgorithm trainingbaseclassifier algorithmclinical decision supportclinical decision-makingclinical practicedesignelectronic dataeptifibatidehealth care disparityhealth care settingshealth inequalitieslive streammachine learning algorithmmalemenmortalityovertreatmentprediction algorithmpredictive modelingpredictive toolsprospectiveracial biasracial disparityreceptorresource guidesresponserisk stratificationsexsex disparitystandard of caresupport toolsthrombolysistooltrait
项目摘要
Abstract
Significance: Racial and sex disparities in the diagnosis and care of acute coronary syndrome (ACS) patients
are well documented. As machine learning algorithms (MLA) become more common in healthcare settings, it is
imperative to ensure that these methods do not contribute to disparities through biased predictions or
differential accuracy across racial and sex groups. Research Question: Can a MLA be trained to be more
accurate and less biased than commonly used risk stratification systems for ACS prediction? Prior Work: The
research team developed a preliminary gradient boosted tree model for myocardial infarction (MI) prediction
using retrospective data from electronic health records. On a hold-out test set, the algorithm classifier attained
an area under the receiver operating characteristic curve (AUROC) value of 0.92 when tested for the
detection of MI at any point during a patient’s hospital stay. Other prior work by the research team involved
development of a MLA to minimize bias in inpatient mortality predictions between White and non-White
patient groups. The model was found to be unbiased as measured by the equal opportunity difference (EOD =
0.016, p = 0.204) and outperformed commonly used severity scoring systems MEWS, SAPS-II, and APACHE
in respect to bias and accuracy. Specific Aims: In Aim 1, an unbiased model for early ACS prediction will be
developed. Preprocessing the MLA training data will remove aspects of the data that reflect systemic health
inequities while maintaining the aspects of the data that reflect relevant patient measurements and outcomes.
Assessment of equal opportunity difference (EOD) and the Zemel statistic will provide a means to evaluate the
MLA’s ability to operate without sex or racial bias. In Aim 2, the model’s performance will be compared to three
commonly used ACS risk stratification scores. Evaluating model performance and bias against these systems
will allow for comparison of the unbiased MLA to the current ACS standard of care. Methods: Aim 1: An ACS
prediction algorithm that will be demonstrated to be unbiased when comparing performance accuracy on White
vs. non-White and male vs. female emergency department patients will be developed. The model’s
performance will be assessed with regard to the EOD and Zemel statistic, which measure the difference in
false negative results and average predicted risk, respectively, between White and non-White and male and
female patients under the null hypothesis of no difference. Aim 2: Model performance will be compared to
modified versions of three other commonly used ACS risk stratification scores: the Global Registry of Acute
Coronary Events (GRACE) score; the Platelet glycoprotein IIb/IIIa in Unstable angina: Receptor Suppression
Using Integrilin (eptifibatide) Therapy (PURSUIT) score; and the Thrombolysis in Myocardial Infarction (TIMI)
score, some of which have been shown to perform differentially across gender and race. EOD and the Zemel
statistic will also be assessed as a measure of bias for the MLA, GRACE, PURSUIT and TIMI scores. Future
Directions: The MLA will be implemented in live hospital settings for prospective evaluation.
摘要
意义:急性冠状动脉综合征(ACS)患者诊断和护理中的种族和性别差异
都有详细的记载随着机器学习算法(MLA)在医疗保健环境中变得越来越普遍,
必须确保这些方法不会通过有偏见的预测或
不同种族和性别群体之间的准确性差异。研究问题:MLA可以被训练成更多
ACS预测的准确性和偏倚性低于常用的危险分层系统?作品:The
一个研究小组开发了一种用于心肌梗死(MI)预测的初步梯度提升树模型
使用电子健康记录的回顾性数据。在一个保持不变的测试集上,该算法的分类器达到了
接受者工作特征曲线下面积(AUROC)值为0.92,
在患者住院期间的任何时间点检测MI。参与研究的研究小组先前的其他工作
制定MLA,以最大限度地减少白色和非白色患者之间住院死亡率预测的偏倚
患者群体。该模型被认为是无偏的,如测量的平等机会差异(EOD =
0.016,p = 0.204),并且优于常用的严重程度评分系统MEWS、SAPS-II和APACHE
在偏差和准确性方面。具体目标:在目标1中,将建立早期ACS预测的无偏模型,
开发预处理MLA训练数据将删除反映系统健康的数据方面
不公平,同时保持反映相关患者测量和结果的数据方面。
平等机会差异(EOD)和Zemel统计的评估将提供一种手段来评估
MLA在没有性别或种族偏见的情况下运作的能力在目标2中,模型的性能将与三个
常用的ACS风险分层评分。评估模型性能和对这些系统的偏见
将允许将无偏倚MLA与当前ACS标准治疗进行比较。方法:目的1:ACS
当比较白色的性能准确度时,将证明预测算法是无偏的
vs.将制定非白人和男性与女性急诊科患者。模型的
性能将根据爆炸物处理和泽梅尔统计进行评估,这两项统计衡量了
白色和非白色和男性之间的假阴性结果和平均预测风险,
女性患者在无差异的零假设下。目标2:将模型性能与
其他三种常用ACS风险分层评分的改良版本:急性冠脉综合征全球登记研究
冠状动脉事件(GRACE)评分;不稳定型心绞痛患者血小板糖蛋白IIb/IIIa:受体抑制
使用Integrilin(依替巴肽)治疗(PURSUIT)评分;和心肌梗死溶栓(TIMI)
分数,其中一些已被证明在性别和种族之间存在差异。爆炸物处理和Zemel
还将评估统计量作为MLA、GRACE、PURSUIT和TIMI评分的偏倚指标。未来
说明:MLA将在现场医院环境中实施,以进行前瞻性评价。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Qingqing Mao其他文献
Qingqing Mao的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 25.66万 - 项目类别:
Research Grant