The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
基本信息
- 批准号:10259732
- 负责人:
- 金额:$ 239.78万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-24 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAffectAlgorithmsAtlasesAutomobile DrivingBiological AssayBiological MarkersBiopsyBostonBreast MelanomaCDK4 geneCancer CenterCell LineCellsClinicClinicalClinical DataCoculture TechniquesCohort AnalysisCollectionColon CarcinomaComplexComputational BiologyDataData ScienceEcosystemExcisionExperimental DesignsGenomicsGeographyHistologicHumanImmuneImmunologyImmunotherapyInstitutionLarge Intestine CarcinomaLeadLeadershipMalignant - descriptorMalignant NeoplasmsMapsMeasuresMetastatic MelanomaMicrosatellite RepeatsModalityNon-MalignantOrganoidsPatient-Focused OutcomesPatientsPharmaceutical PreparationsProteinsRNAResearchResearch DesignResistanceResolutionRiskSamplingTestingTissuesTreatment outcomeValidationanticancer researchbasecancer therapycell communitycell typeexperienceexperimental studygenomic dataimmune checkpoint blockadeimproved outcomeinnovationmalignant breast neoplasmmemberneoplastic cellnext generationnovelpatient stratificationprecision oncologypredictive markerpredictive modelingprospectiveresponsesingle-cell RNA sequencingspatial integrationtherapeutic targettherapeutically effectivetherapy resistanttreatment responsetreatment strategytumortumor progression
项目摘要
Most patients who die from cancer do so because their cancer is resistant to available therapies, either
intrinsically, or as it evolves in response to treatment. However, the fundamental mechanisms driving resistance
remain largely unknown. Tumors are comprised of a complex multicellular ecosystem of malignant and non-
malignant cells, and changes in their composition, states, spatial organization and interactions are central to
therapeutic resistance. Thus, there is an enormous need to chart an atlas of a tumor's cells, their spatial
organization and interactions as those change dynamically in resistance to therapy. Technological
breakthroughs in spatial and single-cell genomics, including many innovations by our team, now put an atlas
within reach, but harnessing this remarkable opportunity, requires collection of multiple spatial and single cell
genomics data in clinical samples; novel study design strategies; new experimental and computational strategies
to integrate across cellular and spatial data; algorithms to construct tumor atlases that capture the resistant state;
and showing how to use an atlas to formulate and test new predictive models of resistance. The Boston Human
Tumor Atlas Network Research Center (HTA-RC) will address each of these challenges by creating three
comprehensive atlases of the cellular geography of human cancer to understand how changes in the
tumor ecosystem lead to therapeutic resistance in: (1) Primary and acquired resistance to CDK4/6 inhibition
in breast cancer; (2) Primary and acquired resistance to immune checkpoint blockade in metastatic melanoma;
and (3) Primary resistance to immunotherapy in microsatellite stable (MSS) colorectal carcinoma (CRC)
compared with microsatellite instable (MSI) CRC. All three tumors types tackle an unmet clinical need; have an
approximately equal rate of resistance and response to allow comparisons between states; and harness
significant clinical experience and build on substantial preliminary results at our center. To construct the atlases,
we will collect at least 100 biospecimens per year from resections and biopsies of the three tumor types and
analyze them with histopathological data, high-resolution spatial multiplex RNA and protein data, single-
cell genomics data, and temporal clinical data. Our algorithms will recover key features of each data modality,
and integrate them into a single atlas to determine what predicts and underlies resistance. We build on a
well-established interdisciplinary team in two major cancer centers (DFCI, MGH) and four research
institutions (Broad, Harvard, Stanford, Princeton). Our leadership (Haining, Regev) and Units comprise of
foremost experts and pioneers in clinical genomics (Biospecimens; Johnson, Wagle), spatial and single cell
genomics (Shalek, Rozenblatt-Rosen, Nolan, Zhuang), and computational biology and data science (Regev,
Van Allen, Engelhardt). Our atlases will allow identification of predictive biomarkers of resistance in the tumor
ecosystem, and therapeutic target discovery, targeting diverse facets of the complex tumor ecosystem.
大多数死于癌症的患者之所以这样做,是因为他们的癌症对可用疗法有抵抗力
本质上,或者随着治疗的响应而演变。但是,驱动阻力的基本机制
在很大程度上未知。肿瘤由恶性和非 -
恶性细胞及其组成,状态,空间组织和相互作用的变化对于
治疗性抗性。因此,巨大的需要图表肿瘤细胞的地图集,它们的空间
组织和互动随着对治疗的抵抗动态变化。技术
空间和单细胞基因组学的突破,包括我们团队的许多创新,现在放了一个Atlas
触手可及,但要利用这一非凡的机会,需要收集多个空间和单个单元格
临床样品中的基因组数据;新颖的研究设计策略;新的实验和计算策略
跨细胞和空间数据集成;构建捕获抗性状态的肿瘤图谱的算法;
并展示如何使用地图集制定和测试新的电阻预测模型。波士顿人
肿瘤地图集网络研究中心(HTA-RC)将通过创建三个来应对这些挑战
人类癌细胞地理的综合图像,以了解如何变化
肿瘤生态系统导致治疗性抗性:(1)对CDK4/6抑制的主要和获得性抗性
在乳腺癌中; (2)转移性黑色素瘤中对免疫检查点阻滞的一级和获得性抗性;
(3)微卫星稳定(MSS)结直肠癌(CRC)中对免疫疗法的一级耐药性
与微卫星(MSI)CRC相比。所有三种肿瘤类型都解决了未满足的临床需求。有一个
电阻率和响应速度大致相等,以允许状态之间进行比较;和安全带
在我们中心,临床经验丰富,并以实质性的初步结果为基础。为了构建地图集,
我们将从三种肿瘤类型的切除和活检中每年至少收集100个生物测量和
通过组织病理学数据,高分辨率空间多重RNA和蛋白质数据分析它们
细胞基因组学数据和时间临床数据。我们的算法将恢复每种数据模式的关键功能,
并将它们整合到一个地图集中,以确定什么预测和基础阻力。我们以一个
两个主要癌症中心(DFCI,MGH)和四项研究的跨学科团队和四个研究
机构(Broad,Harvard,Stanford,Princeton)。我们的领导(Haining,Regev)和单位包括
临床基因组学(Biospecimens; Johnson,Wagle),空间和单细胞的最重要专家和开拓者
基因组学(Shalek,Rozenblatt-Rosen,Nolan,Zhuang)和计算生物学与数据科学(Regev,Regev,
范·艾伦(Van Allen),恩格哈特(Engelhardt))。我们的地图酶将允许识别肿瘤中抗性的预测生物标志物
生态系统和治疗靶标发现,靶向复杂肿瘤生态系统的各个方面。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
BRUCE E. JOHNSON其他文献
BRUCE E. JOHNSON的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('BRUCE E. JOHNSON', 18)}}的其他基金
The Cellular Geography of Therapeutic Resistance in Cancer
癌症治疗耐药的细胞地理学
- 批准号:
9791162 - 财政年份:2018
- 资助金额:
$ 239.78万 - 项目类别:
Clinical implementation of single cell tumor transcriptome analysis
单细胞肿瘤转录组分析的临床实施
- 批准号:
9272844 - 财政年份:2016
- 资助金额:
$ 239.78万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
7216360 - 财政年份:2005
- 资助金额:
$ 239.78万 - 项目类别:
EGFR Mutations in Non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
8507610 - 财政年份:2005
- 资助金额:
$ 239.78万 - 项目类别:
EGFR Mutations in Non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
8852562 - 财政年份:2005
- 资助金额:
$ 239.78万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
6906935 - 财政年份:2005
- 资助金额:
$ 239.78万 - 项目类别:
EGFR Mutations in non-Small Cell Lung Cancer
非小细胞肺癌中的 EGFR 突变
- 批准号:
7590311 - 财政年份:2005
- 资助金额:
$ 239.78万 - 项目类别:
相似国自然基金
基于先进算法和行为分析的江南传统村落微气候的评价方法、影响机理及优化策略研究
- 批准号:52378011
- 批准年份:2023
- 资助金额:50 万元
- 项目类别:面上项目
社交网络上观点动力学的重要影响因素与高效算法
- 批准号:62372112
- 批准年份:2023
- 资助金额:50.00 万元
- 项目类别:面上项目
员工算法规避行为的内涵结构、量表开发及多层次影响机制:基于大(小)数据研究方法整合视角
- 批准号:72372021
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法人力资源管理对员工算法应对行为和工作绩效的影响:基于员工认知与情感的路径研究
- 批准号:72372070
- 批准年份:2023
- 资助金额:40 万元
- 项目类别:面上项目
算法鸿沟影响因素与作用机制研究
- 批准号:72304017
- 批准年份:2023
- 资助金额:30 万元
- 项目类别:青年科学基金项目
相似海外基金
Fluency from Flesh to Filament: Collation, Representation, and Analysis of Multi-Scale Neuroimaging data to Characterize and Diagnose Alzheimer's Disease
从肉体到细丝的流畅性:多尺度神经影像数据的整理、表示和分析,以表征和诊断阿尔茨海默病
- 批准号:
10462257 - 财政年份:2023
- 资助金额:
$ 239.78万 - 项目类别:
New Algorithms for Cryogenic Electron Microscopy
低温电子显微镜的新算法
- 批准号:
10543569 - 财政年份:2023
- 资助金额:
$ 239.78万 - 项目类别:
Previvors Recharge: A Resilience Program for Cancer Previvors
癌症预防者恢复活力计划:癌症预防者恢复力计划
- 批准号:
10698965 - 财政年份:2023
- 资助金额:
$ 239.78万 - 项目类别:
In vivo feasibility of a smart needle ablation treatment for liver cancer
智能针消融治疗肝癌的体内可行性
- 批准号:
10699190 - 财政年份:2023
- 资助金额:
$ 239.78万 - 项目类别:
Dynamic neural coding of spectro-temporal sound features during free movement
自由运动时谱时声音特征的动态神经编码
- 批准号:
10656110 - 财政年份:2023
- 资助金额:
$ 239.78万 - 项目类别: