Swift.ai: research and development of an integrated platform for machine-assisted research synthesis
Swift.ai:机器辅助研究合成综合平台的研发
基本信息
- 批准号:10259172
- 负责人:
- 金额:$ 82.03万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-30 至 2023-05-31
- 项目状态:已结题
- 来源:
- 关键词:Active LearningAddressAdoptionAgricultureArtificial IntelligenceClassificationCollaborationsCollectionCommunitiesComplexComputer softwareConsensusCountryDataData SetDecision MakingDevelopmentDisciplineElementsEndocrine disruptionEnvironmental HealthEvidence Based MedicineFeedbackFocus GroupsGoalsGovernmentHealthInfluentialsInternetLearningLettersLiteratureMachine LearningMapsMedicalMethodologyMethodsMissionModelingNational Institute of Environmental Health SciencesNatural Language ProcessingOnline SystemsPhasePoliciesPositioning AttributeProblem FormulationsProceduresProcessPublishingReportingResearchResearch MethodologyResearch PersonnelResourcesReview LiteratureSamplingScientistScreening procedureSmall Business Innovation Research GrantSoftware EngineeringSpeedStatistical MethodsSystemTestingTextToxicologyUncertaintyUpdateactive methodcostdata modelingdata sharingdeep learningevidence baseimprovedinnovationnovel strategiespublic health researchresearch and developmentresponsescreeningsimulationsuccesssystematic reviewuser-friendlyweb app
项目摘要
Project Abstract (30 lines of text)
1 Systematic review and evidence mapping, both forms of research synthesis, are formal, sequential processes
2 for identifying, assessing, and integrating the primary scientific literature. These approaches, already
3 cornerstones of evidence-based medicine, have recently gained significant popularity in several other
4 disciplines including environmental, agricultural, and public health research and are increasingly utilized for
5 informed decision making by governmental organizations. It has been estimated that more than 25,000
6 systematic reviews are conducted and published annually and selecting studies for inclusion is one of the most
7 resource intensive steps for any systematic review or evidence map. In Phase I of our research plan, we have
8 developed a web-based, collaborative systematic review web application called SWIFT-Active Screener, an
9 innovative document screening tool that allows users to identify the majority of relevant articles after screening
10 only a fraction of the total number of abstracts. Our goal for the current proposal is to conduct additional
11 research and development required to make SWIFT-Active Screener a commercial success, while also
12 building on and leveraging methods and software we have previously built to address other stages in the
13 systematic review pipeline. Therefore, one of the primary aims of our ongoing research and development is to
14 address this need by expanding the Active Screener application into an integrated platform for research
15 synthesis by uniting it with several of our other related software products. The resulting platform, which we call
16 “swift.ai,” is described in detail in “Aim 1 – Software engineering to create a unified platform for research
17 synthesis.” In “Aim 2 – Improved statistical methods for Active Screener 2.0”, we expand on the methodological
18 research completed during Phase I of this SBIR, to further develop and refine our methods. Specifically, we
19 investigate new ways to integrate state-of-the art methods in deep learning and new ways to better utilize the
20 large amounts of screening data collected from our users in order to improve our models. Finally, in “Aim 3 –
21 Living evidence maps powered by Active Screener 2.0,” we explore new approaches for using machine
22 learning to facilitate evidence mapping.
项目摘要(30行文本)
1系统综述和证据图,这两种形式的研究综合,是正式的,顺序的过程
2用于识别、评估和整合主要科学文献。这些方法,已经
循证医学的3个基石,最近在其他几个国家获得了显着的普及,
4个学科,包括环境,农业和公共卫生研究,并越来越多地用于
5、政府机构的决策。据估计,超过25,000
每年进行并发表6项系统性综述,选择纳入的研究是最多的研究之一。
任何系统性综述或证据图的7个资源密集型步骤。在我们研究计划的第一阶段,
8开发了一个基于网络的协作式系统评价网络应用程序,称为SWIFT-Active Screener,
9创新的文档筛选工具,允许用户在筛选后识别大多数相关文章
10只是摘要总数的一小部分。我们目前提案的目标是进行额外的
使SWIFT-Active Screener取得商业成功所需的11项研发,同时
12建立和利用我们以前建立的方法和软件来解决
13系统性综述管道。因此,我们正在进行的研究和开发的主要目标之一是
14通过将Active Screener应用扩展为一个集成的研究平台来满足这一需求
15合成通过将它与我们的其他几个相关的软件产品。由此产生的平台,我们称之为
16“swift.ai”,在“目标1 -创建统一研究平台的软件工程”中详细描述
17合成”。在“目标2 -Active Screener 2.0的改进统计方法”中,我们扩展了方法论,
在本SBIR的第一阶段完成了18项研究,以进一步发展和完善我们的方法。我们特别
19研究在深度学习中整合最先进方法的新方法,以及更好地利用
20从我们的用户收集的大量筛选数据,以改善我们的模型。最后,在“目标3 -
21由Active Screener 2.0提供支持的活证据地图,“我们探索使用机器的新方法,
22学习促进证据制图。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Brian Howard其他文献
Brian Howard的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Brian Howard', 18)}}的其他基金
Swift.ai: research and development of an integrated platform for machine-assisted research synthesis
Swift.ai:机器辅助研究合成综合平台的研发
- 批准号:
10428382 - 财政年份:2017
- 资助金额:
$ 82.03万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 82.03万 - 项目类别:
Research Grant