Role of microbiome in cancer and inflammation

微生物组在癌症和炎症中的作用

基本信息

项目摘要

In our studies, we extensively use mice deficient for immune or inflammation-related genes and it is always difficult to distinguish a direct effect of those genes on the colitis, cancer and response to therapy , or an indirect one through the regulation of the intestinal microbiota. We have established methods for the determination of mouse microbioma using 454 sequencing or MiSeq sequencing of 16 RNA, metagenomic analysis using NextSeq sequencing, and cytofluorimetric analysis of FISH labeling of specific bacterial types and we have established a Microbiome core for providing these technologies as a service to the NIH community. We work extensively with germ free mice, gnotobiotic mice with defined intestinal flora, and mice reconstitute after antibiotic treatment. Initially we studied the role of the intestinal microbiota in experimental models of colitis and colitis-associated cancer using mice genetically deficient for inflammation-controlling genes such as MyD88, IL-18, TNF, TLRs, and others. In these mice the genetic defects induce a dysbiosis that can be transferred to normal mice by co-housing or fecal transplant and enhance susceptibility to chemical carcinogenesis. The bacterial species responsible of this increased susceptibility to carcinogenesis and their mechanism of action are being investigated. The role of commensal microbiota in energetic alteration associated with cancer (i.e. obesity, cachexia, anorexia, cancer treatment, irradiation) has been initiated in murine experimental models and in observational clinical experimentation. We were among the very first to show that Commensal bacteria control cancer response to therapy by modulating the tumor microenvironment (Science 342:967-970). The gut microbiome influences both local and systemic inflammation. Although the role of inflammation in cancer is well documented, whether commensal bacteria can exert distant effects on the inflammation in the sterile tumor microenvironment remains unclear. Here we show that microbiota perturbation impairs the response of subcutaneous cancers to CpG-oligonucleotide-immunotherapy or platinum chemotherapy. In antibiotic-treated or germ-free mice, decreased cytokine production from tumor-infiltrating monocyte-derived cells following CpG-ODN treatment reduced tumor necrosis, whereas deficient chemotherapy-induced production of reactive oxygen species by myeloid cells impaired genotoxicity and tumor destruction. Thus, optimal response to cancer immunotherapy and chemotherapy requires an intact commensal microbiota that acts distantly by modulating myeloid-derived cell function in the tumor microenvironment. These findings underscore the importance of the microbiota in the outcome of disease treatment. The toxicity mediated by cisplatin (intestinal mucosa damage, nephrotoxicity, decrease of adipose and muscular tissues (cachexia)) require the presence of gut microbiota. The participation of different microbial species and the mechanisms by which they allow the cisplatin toxicity are being investigated. We also study cancer associated cachexia in mice and humans to investigate whether the microbiota regulates the establishment of this devastating cancer comorbidity and could be targeted therapeutically. In mice we focused initially on a model of cachexia induced by the Lewis Lung Carcinoma (LLC) tumor that in 18-21 days induces weight loss associated with loss of adipose and muscle tissue. LLC-induced cachexia is due to increased lipolysis in the white adipose tissue (WAT). Unlike what we observed in cisplatin induced cachexia, beiging (switch from WAT to brown adipose tissue) is not an important component of LLC induced cachexia. LLC induces cachexia by inducing WAT infiltration of c-Kit expressing immature oxidative neutrophils that induce lipolysis by ROS production. Deletion of neutrophils or treatment of mice with N-acetyl cysteine prevent cachexia. Cachexia is accelerated in germ free mice due to increased lipolysis and failure to upregulate compensatory mechanisms, adipogenesis and lipogenesis. The microbiota delays cancer cachexia at least in part by producing SCFA that regulate lipolysis, lipogenesis and adipogenesis. The results obtained in the LLC model showing absence of beiging, neutrophil infiltration and lack of dependence from IL-6 differ in part from those described in other experimental models. Because different tumor types may induce cachexia through different mechanisms in mice as well as in patients, we will compare the mechanism involved and the role of the microbiota in different models (SW480, 4T1 and C26 transplantable tumors; Kras/P53 pancreatic GEMM and cell lines). Kras/P53 mice and cell lines will be studied in collaboration with Perwez Hussein, CCR. The group of Dan McVicar, CIP, has shown in the spleen of 4T1 tumor bearing animals that immature neutrophils, defined by expression of c-Kit and dependent on c-Kit signaling, possess the capacity for oxidative mitochondrial metabolism and in limited glucose use their mitochondria to support NADPH-oxidase dependent ROS production via fatty acid oxidation. The characteristics of these splenic neutrophils are like those that we observed in the cachectic adipose tissue and that induce lipolysis through ROS, thus we plan to collaborate with Dan McVicar in studying the metabolism of neutrophil and adipose tissue during cachexia. The role of the microbiota will be studied by modifying the microbiota by diet (e.g. diet supplemented with soluble fibers such as inulin) or other perturbations (followed by metagenomic and metatranscriptomic analysis) or by targeted gnotobiotic experiments, focusing initially on the production of SCFA. Cancer patients' neutrophils display immaturity and oxidative metabolism, thus, the mechanism of cachexia observed in mice may extend to humans. We collaborate with Marilia Seelaender, University of Sao Paulo, testing the hypothesis that in cachectic patients gut barrier disruption associated with altered microbiota composition may elicit persistent immune activation in the host. Many laboratories have extended our results to cancer immunotherapy in patients and suggested that the microbiome composition determine the ability of patients with melanoma and other type of cancer to respond to anti-PD1 therapy. However, the different studies have identified different types of bacteria has been responsible for this effect and the mechanisms remain unclear. We have extended the analysis to a large cohort of melanoma patients at the University of Pittsburgh and we are starting to elucidate the reason of the discordant results in the various group and to identify common mechanisms. In collaboration with MD Anderson cancer center we have established that patients with a high fiber diet respond better to anti-PD1 therapy and we have studied the mechanisms underlying this effect in mouse studies. In collaboration with the University of Pittsburgh Cancer Center we have treated 14 anti-PD1 refractory melanoma patients with a fecal microbiota transplant from PD1-responsive patients and in almost half of the patients the rapidly progressive tumors stabilized or significantly responded to the continued anti-PD1 therapy. The mechanisms underlying this effect are being studied with microbiome, cytokine and metabolomic studies.
在我们的研究中,我们广泛地使用缺乏免疫或炎症相关基因的小鼠,并且总是很难通过调节肠道微生物群来区分这些基因对结肠炎,癌症和对治疗的反应的直接作用或间接作用。我们已经建立了使用454个测序或MISEQ测序16 RNA,使用NextSeQ测序的元基因组分析以及对特定细菌类型的鱼类标记的细胞氟化分析的方法,我们已经建立了为这些技术提供这些技术的微生物核心。我们与无菌小鼠,具有定义的肠菌群的gnotobiotic小鼠以及抗生素治疗后的小鼠重新构成。最初,我们研究了肠道微生物群在结肠炎和结肠炎相关癌症实验模型中的作用,使用小鼠在遗传上缺乏炎症控制基因,例如MyD88,IL-18,IL-18,TNF,TNF,TLR和其他。在这些小鼠中,遗传缺陷会诱导营养不良,可以通过共屋或粪便移植并增强对化学癌变的敏感性转移到正常小鼠。正在研究这种细菌物种增加对致癌作用及其作用机理的敏感性。共生微生物群在与癌症(即肥胖症,恶病质,厌食症,癌症治疗,辐射)相关的能量改变中的作用已在鼠实验模型和观察性临床实验中启动。我们是第一个表明共生细菌通过调节肿瘤微环境控制癌症对治疗的反应的人之一(科学342:967-970)。肠道微生物组影响局部和全身性炎症。尽管炎症在癌症中的作用有充分的文献证明,但共生细菌是否可以对无菌肿瘤微环境的炎症产生遥远的影响。在这里,我们表明微生物群扰动会损害皮下癌症对CPG-寡核苷酸免疫疗法或铂化化疗的反应。在抗生素治疗或无菌小鼠中,CPG-ODN治疗后,肿瘤降低单核细胞衍生的细胞的细胞因子产生降低,减少了肿瘤坏死,而缺乏化学疗法诱导的基因托毒性和肿瘤造成的肌动素细胞损害了活性氧的产生。因此,对癌症免疫疗法和化学疗法的最佳反应需要完整的共生菌群,该菌群通过调节肿瘤微环境中的髓样细胞功能而远处起作用。这些发现强调了微生物群在疾病治疗结果中的重要性。顺铂介导的毒性(肠粘膜损伤,肾毒性,脂肪降低和肌肉组织(Cachexia))需要存在肠道微生物群。正在研究不同微生物物种的参与及其允许顺铂毒性的机制。我们还研究了小鼠和人类中癌症的恶病质,以研究微生物群是否调节这种毁灭性的癌症合并症的建立,并可以针对治疗。在小鼠中,我们最初集中在由刘易斯肺癌(LLC)诱导的病虫模型上,该模型在18-21天内诱导了与脂肪和肌肉组织丧失有关的体重减轻。 LLC诱导的恶病质是由于白脂肪组织(WAT)中脂解的增加。与我们在顺铂诱导的恶病质中观察到的不同,beigig(从WAT到棕色脂肪组织切换)并不是LLC诱导的恶病质的重要组成部分。 LLC通过诱导C-KIT浸润表达不成熟的氧化性嗜中性粒细胞,从而诱导恶病质,从而通过ROS产生诱导脂解。嗜中性粒细胞的缺失或用N-乙酰半胱氨酸治疗小鼠预防恶病质。由于脂解的增加和无法上调补偿机制,脂肪生成和脂肪形成,因此在无菌小鼠中加速了恶病质。微生物群至少通过产生调节脂解,脂肪生成和脂肪形成的SCFA至少部分延迟了癌症恶病质。在LLC模型中获得的结果表明,IL-6的缺乏,中性粒细胞浸润和缺乏依赖性与其他实验模型中描述的结果不同。由于不同的肿瘤类型可以通过小鼠和患者的不同机制诱导恶病质,因此我们将比较伴随机制和微生物群在不同模型中的作用(SW480、4T1和C26可移植肿瘤; KRAS/p53胰腺pancreatic Gemm和细胞系)。 KRAS/p53小鼠和细胞系将与CCR Perwez Hussein合作研究。丹·麦维卡(Dan McVicar)组CIP在4T1肿瘤轴承动物的脾脏中显示了未成熟的中性粒细胞,该粒细胞由C-KIT的表达和依赖C-KIT信号的表达定义,具有氧化性线粒体代谢的能力,可以在有限的葡萄糖氧化中氧化氧化剂氧化氧化酶的生产,从而通过有限的粘液氧化氧化氧化氧化氧化剂的产生。这些脾嗜中性粒细胞的特征就像我们在缓存的脂肪组织中观察到的那样,并诱导通过ROS诱导脂肪分解,因此我们计划与Dan McVicar合作研究cachexia期间中性粒细胞和脂肪组织的代谢。将通过饮食(例如饮食(例如饮食)修饰菌群(例如,含糖蛋白等饮食)或其他扰动(随后进行元基因组学和元文字分析)或通过靶向的gnotobobiotic实验,最初侧重于SC​​FA的生产。癌症患者的嗜中性粒细胞表现出不成熟和氧化代谢,因此,在小鼠中观察到的恶病质机制可能延伸到人类。我们与圣保罗大学的Marilia Seelaender合作,检验了以下假设:在缓存的患者中,与微生物群体成分改变有关的肠道屏障破坏可能会引起宿主中的持续免疫激活。许多实验室已将我们的结果扩展到患者的癌症免疫疗法上,并建议微生物组组成决定了黑色素瘤患者和其他类型的癌症对抗PD1治疗的反应能力。然而,不同的研究已经确定了不同类型的细菌已导致这种作用,并且这些机制尚不清楚。我们已经将分析扩展到匹兹堡大学的大量黑色素瘤患者,我们开始阐明各组中不一致的原因并确定常见机制。在与MD Anderson癌症中心合作的情况下,我们确定纤维饮食高的患者对抗PD1治疗的反应更好,并且我们研究了小鼠研究中这种作用的基础机制。在与匹兹堡大学癌症中心合作的情况下,我们通过PD1响应性患者接受了14例抗PD1难治性黑色素瘤患者的粪便菌群移植,几乎一半的患者稳定或对持续的抗PD1疗法进行了迅速进行的迅速进行性肿瘤。通过微生物组,细胞因子和代谢组学研究,正在研究这种作用的机制。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

GIORGIO TRINCHIERI其他文献

GIORGIO TRINCHIERI的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('GIORGIO TRINCHIERI', 18)}}的其他基金

Therapy with fecal microbiota transplantation and immune checkpoint blockade for solid tumors
粪便微生物群移植和免疫检查点阻断治疗实体瘤
  • 批准号:
    10393924
  • 财政年份:
    2022
  • 资助金额:
    $ 191.57万
  • 项目类别:
Therapy with fecal microbiota transplantation and immune checkpoint blockade for solid tumors
粪便微生物群移植和免疫检查点阻断治疗实体瘤
  • 批准号:
    10650717
  • 财政年份:
    2022
  • 资助金额:
    $ 191.57万
  • 项目类别:
Immune Evasion
免疫逃避
  • 批准号:
    6747202
  • 财政年份:
    2004
  • 资助金额:
    $ 191.57万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6429977
  • 财政年份:
    2001
  • 资助金额:
    $ 191.57万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6312712
  • 财政年份:
    2000
  • 资助金额:
    $ 191.57万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6299940
  • 财政年份:
    2000
  • 资助金额:
    $ 191.57万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6101449
  • 财政年份:
    1999
  • 资助金额:
    $ 191.57万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6268605
  • 财政年份:
    1998
  • 资助金额:
    $ 191.57万
  • 项目类别:
CORE--FLOW CYTOMETRY FACILITY
核心——流式细胞仪
  • 批准号:
    6235998
  • 财政年份:
    1997
  • 资助金额:
    $ 191.57万
  • 项目类别:
IMMUNOBIOLOGY OF INTERLEUKIN 12
白细胞介素 12 的免疫生物学
  • 批准号:
    2653831
  • 财政年份:
    1994
  • 资助金额:
    $ 191.57万
  • 项目类别:

相似国自然基金

脂肪组织新型内分泌因子的鉴定及功能研究
  • 批准号:
    82330023
  • 批准年份:
    2023
  • 资助金额:
    220 万元
  • 项目类别:
    重点项目
脂肪干细胞外泌体miRNA-299a-3p调控巨噬细胞Thbs1缓解脂肪组织衰老的机制研究
  • 批准号:
    82301753
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
血管周围脂肪组织TRPV1通道通过脂联素调控肥胖相关高血压的机制研究
  • 批准号:
    82300500
  • 批准年份:
    2023
  • 资助金额:
    30 万元
  • 项目类别:
    青年科学基金项目
糖尿病脂肪组织中SIRT3表达降低进而上调外泌体miR-146b-5p促进肾小管脂毒性的机制研究
  • 批准号:
    82370731
  • 批准年份:
    2023
  • 资助金额:
    49 万元
  • 项目类别:
    面上项目
CXCL1/CXCR2信号轴上调Bcl-2促进筋膜定植巨噬细胞迁移在皮下脂肪组织原位再生中的机制研究
  • 批准号:
    82360615
  • 批准年份:
    2023
  • 资助金额:
    32 万元
  • 项目类别:
    地区科学基金项目

相似海外基金

Adipose-derived biogenic nanoparticles for treatment of myocarditis/DCM(MPDPI)
脂肪源性生物纳米颗粒治疗心肌炎/扩张型心肌病(MPDPI)
  • 批准号:
    10089412
  • 财政年份:
    2020
  • 资助金额:
    $ 191.57万
  • 项目类别:
Tensile Strain-Induced Osteogenesis of Human Mesenchymal Stem Cells in 3D Culture
3D 培养中拉伸应变诱导人间充质干细胞成骨
  • 批准号:
    8013801
  • 财政年份:
    2010
  • 资助金额:
    $ 191.57万
  • 项目类别:
Tensile Strain-Induced Osteogenesis of Human Mesenchymal Stem Cells in 3D Culture
3D 培养中拉伸应变诱导人间充质干细胞成骨
  • 批准号:
    7789382
  • 财政年份:
    2010
  • 资助金额:
    $ 191.57万
  • 项目类别:
Role of microbiome in cancer and inflammation
微生物组在癌症和炎症中的作用
  • 批准号:
    10014549
  • 财政年份:
  • 资助金额:
    $ 191.57万
  • 项目类别:
Role of mouse microbiome in cancer and inflammation
小鼠微生物组在癌症和炎症中的作用
  • 批准号:
    9343818
  • 财政年份:
  • 资助金额:
    $ 191.57万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了