hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception

基于 hiPSC 的多孔微电极阵列上的 DRG 组织模拟作为急性和慢性伤害感受的组织芯片模型

基本信息

  • 批准号:
    10263436
  • 负责人:
  • 金额:
    $ 13.23万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-13 至 2024-07-31
  • 项目状态:
    已结题

项目摘要

Project summary/abstract: Chronic pain afflicts up to one in five adults and is the most common cause of long-term disability in the world. Opioids, which are commonly prescribed for non-cancer pain, are associated with a high incidence of serious effects and abuse. Moreover, current in vivo and in vitro models used to study nociception and test potential treatments are inadequate. Human-based, pathology-relevant models of nociception are urgently needed to facilitate preclinical development of new non-opioid pain therapeutics. Therefore, we propose to develop an innovative 3D model of acute and chronic nociception using hiPSC sensory neurons and satellite glial cell surrogates (an hiPSC-based DRG tissue mimic) on multi-well MEAs. In the UG3 phase, we will develop a tissue chip for modeling acute and chronic nociception based on 3D hiPSC-based dorsal root ganglion (DRG) tissue mimics and a high-content, moderate-throughput microelectrode array (MEA) platform. DRG tissue mimics will be comprised of hiPSC counterparts to constituent intraganglionic DRG cell types embedded in a collagen matrix. We will then demonstrate stable spontaneous and noxious stimulus-evoked behavior in response to thermal, chemical, and electrical stimulation challenges. Furthermore, we aim to demonstrate the clear functional and phenotypic advantages of utilizing a 3D mixed-cell DRG tissue mimic versus purely neuronal 2D or 3D models. More specifically, we aim to demonstrate sensitivity to translational control via ligand receptor interactions between neuronal and non-neuronal cell types, thereby demonstrating pathological relevance to a the ‘holy trinity’ of pain (nociceptive, inflammatory and neuropathic) and our model’s capacity for testing fundamental hypotheses related to contributions of non-neuronal support cells in chronic pain development and maintenance. In the UH3 phase, we will demonstrate the powerful quantitative efficiency and preclinical efficacy of our microphysiological system by detecting known ligand-based modulators of translational control and voltage- gated ion channel antagonists in a sensitized model of chronic nociception. These two classes of drugs are widely recognized as candidate compounds for reversing nociceptive plasticity and/or serving as peripheral analgesics. Moreover, we will quantitatively define pharmacological hits based on widely accepted assay scoring methodologies. Lastly, we will leverage the high-throughput nature or our tissue chip model to screen FDA- approved, bioactive compounds, demonstrating the sensitivity and throughput of our high content assay, and potentially identifying efficacy of candidate therapeutics obscured by less sophisticated methods of phenotypic screening.
项目概要/摘要: 多达五分之一的成年人患有慢性疼痛,是导致长期残疾的最常见原因。 世界。阿片类药物通常用于治疗非癌症疼痛,与高发病率相关 严重影响和滥用。此外,目前用于研究伤害感受和测试的体内和体外模型 潜在的治疗方法不足。迫切需要基于人的、病理相关的伤害感受模型 需要促进新的非阿片类疼痛疗法的临床前开发。因此,我们建议 使用 hiPSC 感觉神经元和卫星开发急性和慢性伤害感受的创新 3D 模型 多孔 MEA 上的胶质细胞替代物(基于 hiPSC 的 DRG 组织模拟物)。 在UG3阶段,我们将开发一种基于3D的急性和慢性伤害感受建模组织芯片 基于 hiPSC 的背根神经节 (DRG) 组织模拟物和高含量、中等通量的微电极 阵列(MEA)平台。 DRG 组织模拟物将由与组成神经节内的 hiPSC 对应物组成 嵌入胶原基质中的 DRG 细胞类型。然后我们将展示稳定的自发性和有害性 响应热、化学和电刺激挑战的刺激诱发行为。此外, 我们的目标是展示利用 3D 混合细胞 DRG 组织的明显功能和表型优势 模拟与纯神经元 2D 或 3D 模型。更具体地说,我们的目标是展示对 通过神经元和非神经元细胞类型之间的配体受体相互作用进行翻译控制,从而 证明疼痛与“三位一体”疼痛(伤害性疼痛、炎症性疼痛和神经性疼痛)的病理相关性 以及我们的模型测试与非神经元支持贡献相关的基本假设的能力 慢性疼痛发展和维持的细胞。 在UH3阶段,我们将展示我们的强大的定量效率和临床前功效 通过检测已知的基于配体的平移控制和电压调节剂来观察微生理系统 慢性伤害感受敏化模型中的门控离子通道拮抗剂。这两类药物是 被广泛认为是逆转伤害感受可塑性和/或作为外周血管的候选化合物 镇痛药。此外,我们将根据广泛接受的测定评分来定量定义药理学命中 方法论。最后,我们将利用高通量特性或我们的组织芯片模型来筛选 FDA- 经批准的生物活性化合物,展示了我们高含量测定的灵敏度和通量,以及 潜在地识别候选疗法的功效,这些疗法被不太复杂的表型方法所掩盖 筛选。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Bryan James Black其他文献

Bryan James Black的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Bryan James Black', 18)}}的其他基金

hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception
基于 hiPSC 的多孔微电极阵列上的 DRG 组织模拟作为急性和慢性伤害感受的组织芯片模型
  • 批准号:
    10387137
  • 财政年份:
    2021
  • 资助金额:
    $ 13.23万
  • 项目类别:
hiPSC-based DRG Tissue Mimics on Multi-well Microelectrode Arrays as a Tissue Chip Model of Acute and Chronic Nociception
基于 hiPSC 的多孔微电极阵列上的 DRG 组织模拟作为急性和慢性伤害感受的组织芯片模型
  • 批准号:
    10254878
  • 财政年份:
    2020
  • 资助金额:
    $ 13.23万
  • 项目类别:

相似海外基金

Kilohertz volumetric imaging of neuronal action potentials in awake behaving mice
清醒行为小鼠神经元动作电位的千赫兹体积成像
  • 批准号:
    10515267
  • 财政年份:
    2022
  • 资助金额:
    $ 13.23万
  • 项目类别:
Signal processing in horizontal cells of the mammalian retina – coding of visual information by calcium and sodium action potentials
哺乳动物视网膜水平细胞的信号处理 â 通过钙和钠动作电位编码视觉信息
  • 批准号:
    422915148
  • 财政年份:
    2019
  • 资助金额:
    $ 13.23万
  • 项目类别:
    Research Grants
CAREER: Resolving action potentials and high-density neural signals from the surface of the brain
职业:解析来自大脑表面的动作电位和高密度神经信号
  • 批准号:
    1752274
  • 财政年份:
    2018
  • 资助金额:
    $ 13.23万
  • 项目类别:
    Continuing Grant
Development of Nanosheet-Based Wireless Probes for Multi-Simultaneous Monitoring of Action Potentials and Neurotransmitters
开发基于纳米片的无线探针,用于同时监测动作电位和神经递质
  • 批准号:
    18H03539
  • 财政年份:
    2018
  • 资助金额:
    $ 13.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Population Imaging of Action Potentials by Novel Two-Photon Microscopes and Genetically Encoded Voltage Indicators
通过新型双光子显微镜和基因编码电压指示器对动作电位进行群体成像
  • 批准号:
    9588470
  • 财政年份:
    2018
  • 资助金额:
    $ 13.23万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10009724
  • 财政年份:
    2018
  • 资助金额:
    $ 13.23万
  • 项目类别:
Enhanced quantitative imaging of compound action potentials in multi-fascicular peripheral nerve with fast neural Electrical Impedance Tomography enabled by 3D multi-plane softening bioelectronics
通过 3D 多平面软化生物电子学实现快速神经电阻抗断层扫描,增强多束周围神经复合动作电位的定量成像
  • 批准号:
    10467225
  • 财政年份:
    2018
  • 资助金额:
    $ 13.23万
  • 项目类别:
Fast high-resolution deep photoacoustic tomography of action potentials in brains
大脑动作电位的快速高分辨率深度光声断层扫描
  • 批准号:
    9423398
  • 财政年份:
    2017
  • 资助金额:
    $ 13.23万
  • 项目类别:
NeuroGrid: a scalable system for large-scale recording of action potentials from the brain surface
NeuroGrid:用于大规模记录大脑表面动作电位的可扩展系统
  • 批准号:
    9357409
  • 财政年份:
    2016
  • 资助金额:
    $ 13.23万
  • 项目类别:
Noval regulatory mechanisms of axonal action potentials
轴突动作电位的新调节机制
  • 批准号:
    16K07006
  • 财政年份:
    2016
  • 资助金额:
    $ 13.23万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了