Control of the 4D chromatin landscape underlying gene activity during development
发育过程中基因活性的 4D 染色质景观控制
基本信息
- 批准号:10265595
- 负责人:
- 金额:$ 64.62万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-17 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:3-DimensionalAcuteAddressAllelesAnimalsArchitectureBiologicalBiological AssayBiological ModelsBiologyBoundary ElementsCell LineCell NucleusCellsCellular biologyCharacteristicsChromatinChromosome StructuresChromosomesComplexCrowdingCuesDefectDevelopmentDevelopmental BiologyDevelopmental ProcessDiseaseDrosophila genusEmbryoEngineeringEnhancersEnvironmentEventGene ExpressionGenesGeneticGenetic TranscriptionGenomeGenomicsGoalsHomeobox GenesHomeostasisImageIndividualKineticsLightLinkLiquid substanceMalignant NeoplasmsMammalian CellMammalsMeasurementMeasuresMembraneMethodsModelingModernizationMolecular ConformationMonitorMusNuclearOrganoidsOutputPatternPhasePhysical condensationPlayPopulationProcessProteinsRegulator GenesRegulatory ElementReporterResolutionRoleStochastic ProcessesSystemTechniquesTechnologyTestingTimeTissuesTranscription CoactivatorTranscriptional RegulationVisualizationcell fate specificationcell typecohesincohesiondevelopmental diseaseembryonic stem cellflyfunctional gaingastrulationgenetic manipulationgenome-widegenomic locushigh resolution imagingimaging modalityimplantationin vivonovelnovel strategiesoptogeneticsprogramspromoterpublic health relevanceresponsespatiotemporaltooltranscription factorwhole genome
项目摘要
Summary
One of the grand challenges of modern biology is to understand how gene activity is controlled in space and
time, in the context of native chromosomes and in individual living cells. The goal of this proposal is to tackle
exactly this challenge: we will develop new approaches to measure and manipulate long-range chromosomal
interactions and quantify their effects on gene expression, in real-time and in living cells and tissues. By
quantitatively mapping the relationship between transcription factor assembly (e.g. formation of biomolecular
condensates), chromosome organization and transcription kinetics, our study will define how gene expression is
controlled at unprecedented resolution.
Transcriptional regulation forms the basis of cellular differentiation during organismal development, and its
defects underlie a variety of disease states, from developmental disorders to cancer. Yet current methods are
limited: traditional live-imaging lacks the spatial resolution to accurately define chromosome organization at the
scale of individual genes, while bulk assays using fixed material are ill-suited for studying temporal dynamics. In
addition, membrane-less nuclear condensates, which form through liquid-liquid phase separation, are thought to
play key but as-yet-undefined roles in regulating transcription.
To address these challenges, we will develop new imaging methods to measure chromosomal distances in
living cells and build optogenetic tools to assemble/disassemble chromosome loops and nuclear condensates.
We will deploy these tools to examine regulatory interactions at genomic scales characteristic of enhancer–
promoter interactions in flies and mammals (from tens to hundreds of kilobases), and study their implications in
the context of cell fate specification in the developing Drosophila embryo. The resulting technologies will be
applied to analogous transcriptional loci in mouse embryonic stem cells and organoids derived from these cells.
Together, the proposed studies will help reveal how robust mechanisms of cell type specification emerge from
stochastic processes such as transcriptional bursts, fluctuations in the size and stability of biomolecular
condensates, and dynamic instability of chromatin architecture. The overall goal of this project is to establish a
quantitative link between chromatin architecture and transcriptional activity, which will ultimately allow us to take
control of gene activity by re-engineering the transcriptional programs underlying developmental and disease
processes.
总结
现代生物学的重大挑战之一是了解基因活动如何在太空中控制,
时间,在自然染色体和个体活细胞的背景下。该提案的目的是解决
我们将开发新的方法来测量和操纵长距离染色体,
实时和在活细胞和组织中进行相互作用并量化其对基因表达的影响。通过
定量绘制转录因子组装(例如生物分子的形成)之间的关系
浓缩物),染色体组织和转录动力学,我们的研究将定义基因表达是如何被激活的。
以前所未有的分辨率进行控制。
转录调控是生物体发育过程中细胞分化的基础,
缺陷是从发育障碍到癌症的各种疾病状态的基础。然而,目前的方法是
限制:传统的实时成像缺乏空间分辨率,无法准确定义染色体的组织结构。
单个基因的规模,而使用固定材料的批量测定不适合研究时间动态。在
此外,通过液-液相分离形成的无膜核冷凝物被认为
在调节转录中起着关键但尚未确定的作用。
为了应对这些挑战,我们将开发新的成像方法来测量染色体距离,
活细胞和构建光遗传学工具来组装/拆卸染色体环和核浓缩物。
我们将部署这些工具来研究增强子特征的基因组尺度上的调控相互作用,
启动子相互作用在苍蝇和哺乳动物(从几十到几百个酶),并研究其影响,
果蝇胚胎发育过程中细胞命运特化的背景。由此产生的技术将是
应用于小鼠胚胎干细胞和衍生自这些细胞的类器官中的类似转录位点。
总之,拟议的研究将有助于揭示细胞类型特化的强大机制是如何出现的,
随机过程,如转录爆发,生物分子大小和稳定性的波动,
浓缩物和染色质结构的动态不稳定性。该项目的总体目标是建立一个
染色质结构和转录活性之间的定量联系,这将最终使我们能够
通过重新设计发育和疾病的转录程序来控制基因活性
流程.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Thomas Gregor其他文献
Thomas Gregor的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Thomas Gregor', 18)}}的其他基金
Control of the 4D chromatin landscape underlying gene activity during development
发育过程中基因活性的 4D 染色质景观控制
- 批准号:
10469417 - 财政年份:2020
- 资助金额:
$ 64.62万 - 项目类别:
Control of the 4D chromatin landscape underlying gene activity during development
发育过程中基因活性的 4D 染色质景观控制
- 批准号:
10661616 - 财政年份:2020
- 资助金额:
$ 64.62万 - 项目类别:
Imaging chromosome dynamics and measuring its impact on transcriptional activity
染色体动态成像并测量其对转录活性的影响
- 批准号:
9003587 - 财政年份:2015
- 资助金额:
$ 64.62万 - 项目类别:
Imaging chromosome dynamics and measuring its impact on transcriptional activity
染色体动态成像并测量其对转录活性的影响
- 批准号:
9298654 - 财政年份:2015
- 资助金额:
$ 64.62万 - 项目类别:
Controlling collective behavior in eukaryotic cell populations
控制真核细胞群体的集体行为
- 批准号:
8788934 - 财政年份:2012
- 资助金额:
$ 64.62万 - 项目类别:
Controlling collective behavior in eukaryotic cell populations
控制真核细胞群体的集体行为
- 批准号:
8411979 - 财政年份:2012
- 资助金额:
$ 64.62万 - 项目类别:
Controlling collective behavior in eukaryotic cell populations
控制真核细胞群体的集体行为
- 批准号:
8246188 - 财政年份:2012
- 资助金额:
$ 64.62万 - 项目类别:
Controlling collective behavior in eukaryotic cell populations
控制真核细胞群体的集体行为
- 批准号:
8605199 - 财政年份:2012
- 资助金额:
$ 64.62万 - 项目类别:
The biophysical and molecular mechanisms of reliability in development
发育可靠性的生物物理和分子机制
- 批准号:
8468180 - 财政年份:2011
- 资助金额:
$ 64.62万 - 项目类别:
The biophysical and molecular mechanisms of reliability in development
发育可靠性的生物物理和分子机制
- 批准号:
8665441 - 财政年份:2011
- 资助金额:
$ 64.62万 - 项目类别:
相似海外基金
Acute senescence: a novel host defence counteracting typhoidal Salmonella
急性衰老:对抗伤寒沙门氏菌的新型宿主防御
- 批准号:
MR/X02329X/1 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Fellowship
Transcriptional assessment of haematopoietic differentiation to risk-stratify acute lymphoblastic leukaemia
造血分化的转录评估对急性淋巴细胞白血病的风险分层
- 批准号:
MR/Y009568/1 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Fellowship
Combining two unique AI platforms for the discovery of novel genetic therapeutic targets & preclinical validation of synthetic biomolecules to treat Acute myeloid leukaemia (AML).
结合两个独特的人工智能平台来发现新的基因治疗靶点
- 批准号:
10090332 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Collaborative R&D
Cellular Neuroinflammation in Acute Brain Injury
急性脑损伤中的细胞神经炎症
- 批准号:
MR/X021882/1 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Research Grant
STTR Phase I: Non-invasive focused ultrasound treatment to modulate the immune system for acute and chronic kidney rejection
STTR 第一期:非侵入性聚焦超声治疗调节免疫系统以治疗急性和慢性肾排斥
- 批准号:
2312694 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Standard Grant
Combining Mechanistic Modelling with Machine Learning for Diagnosis of Acute Respiratory Distress Syndrome
机械建模与机器学习相结合诊断急性呼吸窘迫综合征
- 批准号:
EP/Y003527/1 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Research Grant
FITEAML: Functional Interrogation of Transposable Elements in Acute Myeloid Leukaemia
FITEAML:急性髓系白血病转座元件的功能研究
- 批准号:
EP/Y030338/1 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Research Grant
KAT2A PROTACs targetting the differentiation of blasts and leukemic stem cells for the treatment of Acute Myeloid Leukaemia
KAT2A PROTAC 靶向原始细胞和白血病干细胞的分化,用于治疗急性髓系白血病
- 批准号:
MR/X029557/1 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Research Grant
ロボット支援肝切除術は真に低侵襲なのか?acute phaseに着目して
机器人辅助肝切除术真的是微创吗?
- 批准号:
24K19395 - 财政年份:2024
- 资助金额:
$ 64.62万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Collaborative Research: Changes and Impact of Right Ventricle Viscoelasticity Under Acute Stress and Chronic Pulmonary Hypertension
合作研究:急性应激和慢性肺动脉高压下右心室粘弹性的变化和影响
- 批准号:
2244994 - 财政年份:2023
- 资助金额:
$ 64.62万 - 项目类别:
Standard Grant