Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection

运动引起的剪切应力调节血管修复和保护的代谢途径

基本信息

项目摘要

Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection Cardiovascular and metabolic diseases are on the rise in our veterans returning from battlefields in Afghanistan and the Middle East, and exercise intervention remains an effective lifestyle modification. Hemodynamic stress forces modulate both metabolic and mechanical effects on vascular endothelial cells, mediating the focal and eccentric nature of atherosclerotic lesions. The advent in metabolomics and metabolic profiling has led to the discovery of new metabolic biomarkers and therapeutic targets. We established that bidirectional oscillatory flow impairs autophagic flux, perturbing mitochondrial homeostasis. In contrast, unidirectional pulsatile flow attenuated mitochondrial DNA damage to maintain endothelial homeostasis. In parallel, we developed flexible micro-electrochemical impedance sensors for detection of metabolically active atherosclerotic lesions in the New Zealand White (NZW) rabbit model. We demonstrated that oxidized Low- Density Lipoprotein (oxLDL) in atherosclerotic lesions display distinct frequency-dependent electrical and dielectrical properties. Our preliminary studies revealed that pulsatile and oscillatory flow differentially modulated metabolic pathways to promote vascular regeneration and athero-protection. We demonstrated that flow-sensitive arterial metabolic changes were detected by electrochemical impedance spectroscopy (EIS). Furthermore, our metabolomics analyses revealed that PSS vs. OSS differentially activates PKCɛ-6- phosphofructo-2-kinase/fructose-2,6-biphosphatase 3 (PFKFB3) signaling to increase glycolytic metabolites, but to decrease gluconeogenic metabolites, for vascular repair and regeneration. Metabolomics analyses further uncovered flow-sensitive nuclear hormone receptor peroxisome proliferator-activated receptor  (PPAR)-dependent fatty acid metabolites to mitigate monocyte recruitment. In this context, we hypothesize that exercise-augmented pulsatile shear stress (PSS) modulates glycolytic and lipid metabolic pathways to influence vascular regeneration and protection, leading to the arterial metabolic changes that can be detected by 3-D EIS mapping. To test our hypothesis, we have three aims. In Aim 1, we will determine if flow-mediated PKCε signaling modulates glycolytic metabolites for vascular regeneration. We hypothesize that PSS and OSS differentially modulate PKCε-PFKFB3 signaling pathway to regulate production of glycolytic metabolites. In Aim 2, we will determine if flow-sensitive PPAR signaling modulates lipid metabolites for vascular protection. We hypothesize that PSS and OSS differentially modulate PPAR-SCD-1 signaling to regulate production of fatty acid metabolites. In Aim 3, we will demonstrate shear stress-PPAR- mediated arterial metabolic changes by 3-D EIS mapping. We hypothesize that PPAR-SCD1-mediated metabolic changes can be interrogated by 3-D EIS mapping. Overall, the integration of vascular biology, hemodynamic forces and metabolomic profiling will provide metabolic insights into flow modulation of glycolytic and lipid metabolisms to discover new biomarkers with therapeutic implications for our veterans at risk for heart disease and metabolic syndromes.
运动诱导的剪应力调节血管修复和保护的代谢途径

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Tzung K Hsiai其他文献

Valentinuzzi ME: Understanding the Human Machine, A Primer for Bioengineering
  • DOI:
    10.1186/1475-925x-4-8
  • 发表时间:
    2005-02-10
  • 期刊:
  • 影响因子:
    3.200
  • 作者:
    Tzung K Hsiai
  • 通讯作者:
    Tzung K Hsiai

Tzung K Hsiai的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Tzung K Hsiai', 18)}}的其他基金

Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
  • 批准号:
    10626035
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
  • 批准号:
    10315583
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
  • 批准号:
    10458052
  • 财政年份:
    2021
  • 资助金额:
    --
  • 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
  • 批准号:
    10661490
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
  • 批准号:
    10674980
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
  • 批准号:
    10358490
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
  • 批准号:
    10038297
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
  • 批准号:
    10202717
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
  • 批准号:
    10469660
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection
运动引起的剪切应力调节血管修复和保护的代谢途径
  • 批准号:
    9563814
  • 财政年份:
    2019
  • 资助金额:
    --
  • 项目类别:

相似海外基金

Targeting 6-Phosphofructo-2-Kinase to increase efficacy of CDK4/6 Inhibitors
靶向 6-Phosphofructo-2-Kinase 以提高 CDK4/6 抑制剂的功效
  • 批准号:
    10650304
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Targeting 6-Phosphofructo-2-Kinase to increase efficacy of CDK4/6 Inhibitors
靶向 6-Phosphofructo-2-Kinase 以提高 CDK4/6 抑制剂的功效
  • 批准号:
    10052862
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Targeting 6-Phosphofructo-2-Kinase to increase efficacy of CDK4/6 Inhibitors
靶向 6-Phosphofructo-2-Kinase 以提高 CDK4/6 抑制剂的功效
  • 批准号:
    10430005
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Targeting 6-Phosphofructo-2-Kinase to increase efficacy of CDK4/6 Inhibitors
靶向 6-Phosphofructo-2-Kinase 以提高 CDK4/6 抑制剂的功效
  • 批准号:
    10213670
  • 财政年份:
    2020
  • 资助金额:
    --
  • 项目类别:
Expression of Inducible 6-phosphofructo-2-kinase Isoforms in Skeletal Muscle and Their Potential Role in Glycolytic Regulation
诱导型 6-磷酸果糖-2-激酶亚型在骨骼肌中的表达及其在糖酵解调节中的潜在作用
  • 批准号:
    18590971
  • 财政年份:
    2006
  • 资助金额:
    --
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Targeting of 6-Phosphofructo-2 kinase in Cancer
6-Phosphofructo-2 激酶在癌症中的靶向作用
  • 批准号:
    7465455
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Targeting of 6-Phosphofructo-2 kinase in Cancer
6-Phosphofructo-2 激酶在癌症中的靶向作用
  • 批准号:
    6963019
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Targeting of 6-Phosphofructo-2 kinase in Cancer
6-Phosphofructo-2 激酶在癌症中的靶向作用
  • 批准号:
    7277318
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
Targeting of 6-Phosphofructo-2 kinase in Cancer
6-Phosphofructo-2 激酶在癌症中的靶向作用
  • 批准号:
    7114359
  • 财政年份:
    2005
  • 资助金额:
    --
  • 项目类别:
The Molecular Mechanisms Governing the Catalysis of 6-Phosphofructo-2-kinase
6-磷酸果糖-2-激酶催化的分子机制
  • 批准号:
    8917824
  • 财政年份:
    1990
  • 资助金额:
    --
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了