Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
基本信息
- 批准号:10358490
- 负责人:
- 金额:$ 39.77万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-02-05 至 2024-01-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressAnatomyAnteriorArchitectureBradycardiaBrainCardiacCardiovascular systemChargeClinicalCollaborationsConsumptionCouplingDevelopmentDevicesDiagnosticEffectivenessElectric CapacitanceElectrical EngineeringElectrocardiogramElectrodesEncapsulatedEngineeringFamily suidaeFeedbackFrequenciesGoalsGoldHeartImmuneImplantIn SituLeadLengthLifeMagnetismMechanicsMediatingMetabolicModelingOilsOutputPacemakersPatientsPeripheral Nerve StimulationPre-Clinical ModelProceduresResearchSemiconductorsSilicone OilsSpinal CordStomachSurfaceSystemTechnologyTherapeuticTimeVariantabsorptionbasebiomaterial compatibilitycardiac veincircadiandensitydesignexperienceflexibilityimplantable devicein vivointegrated circuitmetal oxidemulti-electrode arraysneural stimulationneuroregulationnovelparyleneparylene Cprinted circuit boardresponsesample fixationsensorsubcutaneoustransmission processvoltagewireless
项目摘要
Abstract
Despite recent advances in implantable biomedical devices, the utilization of wireless power delivery continues
to be a challenge due to anatomical size constraints that limit sufficient power transfer. In addition to
pacemakers, implantable stimulators, including neuromodulation devices used for spinal cord, deep brain, and
peripheral nerve stimulation, are confined by the same lead-based architecture. Thus, developing wireless
power transfer for implantable devices, including the pacemaker, has the potential to mitigate a host of device-
related complications. A primary challenge in inductively powered biomedical devices remains in developing a
micro-scale receiver antenna with sufficient power output while minimizing transmitter power consumption over
an anatomically and wirelessly feasible range. Eliminating the pacing leads, bulky batteries, fixation-associated
mechanical burden, and repeated procedures for battery replacement and device retraction remains an unmet
clinical need. In this context, we seek to advance a long-range inductively powered wireless and batteryless
micro (µ)-system with sufficient power for pacing functionality. Our encouraging preliminary results support the
feasibility of a pacing system with a subcutaneous unit and micro-scale pacer unit to induce sufficient power
transfer for ex vivo pacing to a porcine heart. We hereby address the fundamental constraints of in vivo long-
range pacing using an intravascular micro-pacing system. Our objective is to integrate advanced antenna and
circuit design into a pacer system to enable intravascular deployment of wirelessly powered µ-pacer to the
anterior cardiac vein (ACV) for pacing. Our goal is to eliminate the device fixation- and lead-related mechanical
complications for optimal power transfer efficiency. To deliver our objective, we have three aims. In Aim 1, we
will demonstrate the fundamental µ-antenna design and fabrication to enhance power transfer efficiency. In
Aim 2, we will integrate CMOS technology and the novel parylene-on-oil encapsulation to enable intravascular
deployment. In Aim 3, we will demonstrate the µ-pacer for real-time intravascular pacing in our pre-clinical
model. Successful deployment of this wireless power transmission system provides the theoretical and
experimental framework to overcome the anatomical size constraints that limit sufficient power transfer with
translational implications for both cardiac and non-cardiac stimulation.
摘要
尽管植入式生物医学设备最近取得了进展,但无线电力输送的应用仍在继续
这是一个挑战,因为解剖尺寸的限制限制了足够的能量转移。除了……之外
起搏器,植入式刺激器,包括用于脊髓、脑深部和
外周神经刺激,都受到相同的铅基架构的限制。因此,开发无线
包括起搏器在内的植入式设备的能量转移有可能缓解一系列设备-
相关并发症。感应供电生物医学设备的主要挑战仍然是开发一种
微尺度接收器天线,具有足够的功率输出,同时将发射机功耗降至最低
一个解剖学上和无线上可行的射程。消除起搏导线、笨重的电池、与固定相关的
机械负担,以及电池更换和设备收回的重复程序仍然没有得到满足
临床需要。在这种背景下,我们寻求推进一种远程感应供电的无线和无电池
微(µ)-具有足够功率以实现起搏功能的系统。我们令人鼓舞的初步结果支持了
具有皮下单位和微型起搏器单位的起搏系统产生足够能量的可行性
将体外起搏转移到猪的心脏。我们在此解决体内长时间的基本限制-
使用血管内微起搏系统的射程起搏。我们的目标是将先进的天线和
将电路设计集成到起搏器系统中,使无线供电的微起搏器能够在血管内部署到
心脏前静脉(ACV)用于起搏。我们的目标是消除设备固定和铅相关的机械
最佳电能传输效率的复杂性。为了实现我们的目标,我们有三个目标。在目标1中,我们
将演示微天线的基本设计和制造,以提高功率传输效率。在……里面
目标2,将cmos技术与新型的对二甲苯-油包覆技术相结合,实现血管内
部署。在目标3中,我们将在临床前演示用于实时血管内起搏的µ起搏器
模特。该无线输电系统的成功部署提供了理论和实践依据
克服限制足够能量传递的解剖尺寸限制的实验框架
对于心脏刺激和非心脏刺激的翻译含义。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Tzung K Hsiai其他文献
Valentinuzzi ME: Understanding the Human Machine, A Primer for Bioengineering
- DOI:
10.1186/1475-925x-4-8 - 发表时间:
2005-02-10 - 期刊:
- 影响因子:3.200
- 作者:
Tzung K Hsiai - 通讯作者:
Tzung K Hsiai
Tzung K Hsiai的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Tzung K Hsiai', 18)}}的其他基金
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10626035 - 财政年份:2021
- 资助金额:
$ 39.77万 - 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10315583 - 财政年份:2021
- 资助金额:
$ 39.77万 - 项目类别:
Integrating Volumetric Light-Field with Computational Fluid Dynamics to Study Myocardial Trabeculation and Function
将体积光场与计算流体动力学相结合来研究心肌小梁和功能
- 批准号:
10458052 - 财政年份:2021
- 资助金额:
$ 39.77万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10674980 - 财政年份:2020
- 资助金额:
$ 39.77万 - 项目类别:
Intravascular Deployment of a Wirelessly Powered Micro-Pacer
无线供电微型起搏器的血管内部署
- 批准号:
10661490 - 财政年份:2020
- 资助金额:
$ 39.77万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10038297 - 财政年份:2020
- 资助金额:
$ 39.77万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10202717 - 财政年份:2020
- 资助金额:
$ 39.77万 - 项目类别:
UCLA and Caltech integrated Cardiovascular Medicine for Bioengineers (iCMB)
加州大学洛杉矶分校和加州理工学院生物工程师综合心血管医学 (iCMB)
- 批准号:
10469660 - 财政年份:2020
- 资助金额:
$ 39.77万 - 项目类别:
Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection
运动引起的剪切应力调节血管修复和保护的代谢途径
- 批准号:
10265318 - 财政年份:2019
- 资助金额:
$ 39.77万 - 项目类别:
Exercise-Induced Shear Stress Modulates Metabolic Pathways for Vascular Repair and Protection
运动引起的剪切应力调节血管修复和保护的代谢途径
- 批准号:
9563814 - 财政年份:2019
- 资助金额:
$ 39.77万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Fellowship
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Research Grant
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Continuing Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 39.77万 - 项目类别:
Research Grant