Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
基本信息
- 批准号:10265910
- 负责人:
- 金额:$ 41.25万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-08-20 至 2026-06-30
- 项目状态:未结题
- 来源:
- 关键词:AdultAfricanAgingAnimal ModelAntibodiesBig DataBiologyCellsCuesDNA Transposable ElementsDataDevelopmentDiseaseElementsFamilyFemaleGenerationsGeneticGenomeGenomicsGoalsGonadal HormonesHealthHomeostasisJumping GenesJunk DNAKillifishesLaboratory miceLifeLightLinkLongevityMachine LearningMalignant NeoplasmsMobile Genetic ElementsModelingMusNatureNerve DegenerationOrganismParasitesPatternPhysiologyRegulationResearchSex ChromosomesSomatic CellTimeTissuesValidationage relatedbiological sexcell typecost effectivenessfunctional declinefunctional genomicsmalepreventprogramsresponsesexsexual dimorphism
项目摘要
Project summary
The overarching goal of my lab is to understand understudied mechanisms of genomic regulation, and how
they influence lifelong Vertebrate health and disease. In multi-cellular organisms, diverse cell types are
characterized by specific genomic regulation patterns, and the precise control of these patterns is key not only
for development, but also for cell/tissue homeostasis in adults. Indeed, loss of fine control in genomic regulation
has been linked to disease (e.g. cancer, neurodegeneration) and age-related functional decline. An interesting
and understudied family of genomic elements lies in dormant genetic parasites (e.g. transposons, also called
“jumping genes”). Although transposons can represent up to 80% of some eukaryotic genomes, they remain
critically understudied, since they were historically dismissed as unimportant (i.e. “junk DNA”), and their high
copy numbers and repetitive nature pose unique technical challenges. Consistent with their potential impact in
health and disease, the ability of cells to suppress transposon activity is disrupted with disease and with aging.
In addition, accumulating evidence suggests that many aspects of biology and genomic regulation differ between
males and females, including emerging data suggesting potential sex-dimorphism in transposon activity.
However, how transposable elements are regulated throughout life in healthy somatic tissues and
across biological sexes, and how they influence vertebrate health, remains largely unknown. Thus, we
propose to decipher how transposons are controlled in healthy somatic cells (including in male vs. female cells),
and how loss of that control could influence Vertebrate health and disease. To explore this question, my group
will use a unique combination of ‘omics’ approaches, machine-learning, and experimental validation in animal
models. We use two vertebrate models for their respective strengths: the laboratory mouse (e.g. powerful
genetics, validated antibodies, etc.) and the African turquoise killifish, a naturally short-lived model organism I
have helped develop (e.g. short generation time/lifespan, strain diversity, cost-effectiveness, etc.). First, we will
decipher sex-dimorphic regulation of transposon activity, determining the impact of gonadal hormones vs. sex-
chromosomes on such regulation. Second, we will use functional genomics to identify new regulators of
transposon activity in somatic cells. Finally, we will evaluate the impact of transposon control in key somatic
tissues and across sexes on lifelong vertebrate health using the naturally short-lived African turquoise killifish as
a model. Ultimately, understanding the fine control of transposon in healthy cells will help devise strategies to
prevent their misregulation in disease, by allowing us to maintain youthful and healthy genomic regulation
landscapes.
1
项目摘要
我实验室的总体目标是了解理解的基因组调节机制,以及如何
它们会影响终生的脊椎动物健康和疾病。在多细胞生物中,各种细胞类型是
以特定的基因组调节模式为特征,这些模式的精确控制不仅是关键
用于发育,也用于成人的细胞/组织稳态。实际上,基因组调节中的良好控制丧失
与疾病(例如癌症,神经变性)和年龄相关的功能下降有关。一个有趣的
并理解基因组元素的家族在于休眠的遗传寄生虫(例如,也称为转座子
“跳跃基因”)。尽管转座子最多可以代表某些真核基因组的80%,但它们仍然保持
批判性理解,因为历史上他们被认为不重要(即“垃圾DNA”),而他们的高
复制数字和重复性构成独特的技术挑战。与它们在潜在的影响一致的
健康和疾病,细胞抑制转座子活性的能力受到疾病和衰老的破坏。
此外,积累的证据表明生物学和基因组调节的许多方面差异
男性和女性,包括新兴数据表明转座子活性中潜在的性二态性。
但是,在健康的体细胞组织中,如何调节可转座的元素和
在整个生物学性别以及它们如何影响脊椎动物健康状况的情况下,仍然未知。那,我们
建议在健康的体细胞(包括雄性与雌性细胞)中解解转座子如何控制转座子,
以及该控制的丧失如何影响脊椎动物的健康和疾病。为了探索这个问题,我的小组
将在动物中使用“ OMICS”方法,机器学习和实验验证的独特组合
型号。我们使用两个脊椎动物模型来分别具有强度:实验室鼠标(例如功能强大
遗传学,经过验证的抗体等)和非洲绿松石Killifish,这是一种自然短暂的模型有机体
已经有助于开发(例如短期/寿命,应变多样性,成本效益等)。首先,我们会的
跨座子活性的破译性二态调节,确定性腺骑马与性的影响 -
这种调节的染色体。其次,我们将使用功能基因组学来确定
体细胞中的转座子活性。最后,我们将评估转座控制在关键体细胞中的影响
组织和跨性别的终身脊椎动物健康,使用天然短暂的非洲绿松石杀死
模型。最终,了解健康细胞中转座子的精细控制将有助于制定策略
通过允许我们维持年轻和健康的基因组调节来防止其在疾病中的正调
风景。
1
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Berenice Anath Benayoun其他文献
Berenice Anath Benayoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Berenice Anath Benayoun', 18)}}的其他基金
Deciphering hormonal regulation of neutrophil biology
破译中性粒细胞生物学的激素调节
- 批准号:
10412518 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Deciphering hormonal regulation of neutrophil biology
破译中性粒细胞生物学的激素调节
- 批准号:
10707917 - 财政年份:2022
- 资助金额:
$ 41.25万 - 项目类别:
Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
- 批准号:
10650781 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Understanding the regulation and impact of transposable elements in Vertebrate health and disease
了解转座因子对脊椎动物健康和疾病的调节和影响
- 批准号:
10472059 - 财政年份:2021
- 资助金额:
$ 41.25万 - 项目类别:
Transposable elements as drivers of normal and accelerated aging in Vertebrates
转座因子作为脊椎动物正常和加速衰老的驱动因素
- 批准号:
9981604 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Transposable elements as drivers of normal and accelerated aging in Vertebrates
转座因子作为脊椎动物正常和加速衰老的驱动因素
- 批准号:
9794215 - 财政年份:2019
- 资助金额:
$ 41.25万 - 项目类别:
Regulation of transcriptional consistency by broad H3K4me3 domains in young cells and during aging
年轻细胞和衰老过程中广泛的 H3K4me3 结构域对转录一致性的调节
- 批准号:
8868834 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
Regulation of transcriptional consistency by broad H3K4me3 domains in young cells and during aging
年轻细胞和衰老过程中广泛的 H3K4me3 结构域对转录一致性的调节
- 批准号:
9755277 - 财政年份:2015
- 资助金额:
$ 41.25万 - 项目类别:
相似海外基金
Racial Disparities in Alzheimer's Disease and Related Dementias: The Role of School Segregation and Experiences of Discrimination
阿尔茨海默病和相关痴呆症的种族差异:学校隔离的作用和歧视经历
- 批准号:
10606362 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
The Role of Lipids in Alzheimer's Disease and Related Dementias among Black Americans: Examining Lifecouse Mechanisms
脂质在美国黑人阿尔茨海默病和相关痴呆中的作用:检查生命机制
- 批准号:
10643344 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Interactions of SARS-CoV-2 infection and genetic variation on the risk of cognitive decline and Alzheimer’s disease in Ancestral and Admixed Populations
SARS-CoV-2 感染和遗传变异的相互作用对祖先和混血人群认知能力下降和阿尔茨海默病风险的影响
- 批准号:
10628505 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Measuring stress and epigenetic aging among Black older adults in community-based longitudinal studies of aging
在基于社区的衰老纵向研究中测量黑人老年人的压力和表观遗传衰老
- 批准号:
10653606 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别:
Investigators from Novices, a Transdisciplinary Research Education Program to Increase Diversity (INTREPID) in Aging Research
新手研究人员,一项旨在增加衰老研究多样性的跨学科研究教育计划 (INTREPID)
- 批准号:
10625709 - 财政年份:2023
- 资助金额:
$ 41.25万 - 项目类别: