Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data

根据眼科数据实时检测失神发作的算法

基本信息

  • 批准号:
    10267036
  • 负责人:
  • 金额:
    $ 13.69万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-30 至 2022-11-30
  • 项目状态:
    已结题

项目摘要

Abstract Eysz, Inc. is developing an algorithm and software solutions to reliably and affordably detect seizures in an ambulatory setting using existing smart glass technologies. In a proof-of-concept study, Eysz was able to detect >75% of all absence seizures longer than 10 s in duration using only oculometric variables (e.g., pupil size, pupil location, eccentricity, blink frequency) detected using off-the-shelf eye-tracking technology. Eysz seeks to build on this finding by developing and commercializing highly sensitive and specific seizure detection algorithms using eye-movement data as input, with eventual expansion to additional seizure types. This technology has the potential to transform the detection and treatment of seizures for those with epilepsy, one of the most common neurological disorders worldwide. Timely treatment can reduce the chance of additional seizures by half, making early detection and treatment critical. Unfortunately, detection and diagnosis can be difficult using current technologies, especially in types of epilepsy with few observable symptoms such as absence seizures. The gold standard for detecting and characterizing seizure activity is electroencephalogram (EEG) monitoring with video and subsequent review by a trained clinician, but this does not translate well to the outpatient setting. While attempts to develop ambulatory EEGs have been made, these have significant drawbacks, including poor patient acceptability, poor detection capability, and continued reliance on asynchronous review. Additional non-EEG- based motion detection devices are limited to tonic-clonic seizures, which are responsible for a small fraction of all seizure activity. Thus, there is a critical need to reliably detect seizures outside of the clinic to provide physicians with necessary information to guide therapeutic decision making. To address this need, Eysz is developing a digital health platform that leverages existing eye tracking technology to meet this significant unmet gap in the market and is technically feasible, capital-efficient, robust, and innovative. Eysz plans to use existing smart glass technology to export the necessary oculometric data to be analyzed by our seizure detection algorithm. We will also build out databases, software systems, and user interfaces enabling the resulting data to be stored in the cloud and visualized/analyzed by physicians. In this Phase I SBIR, Eysz will advance the development of the seizure detection algorithms by: 1) obtaining oculometric video and EEG data on ≥100 absence seizures from multiple patients, and 2) using ML and statistical methods to optimize an algorithm for identifying absence seizures using eye-tracking data, with a target sensitivity of 85% and specificity of 90%. Lessons learned from this study will be applied (with different training sets) to additional seizures types, such as focal impaired awareness (formerly called complex partial) seizures, the most prevalent seizure type in adults. This work is of critical importance to the field, as demonstrated by support from the Epilepsy Foundation and receipt of both the judges' and people's choice awards in the Epilepsy Foundation's 8th Annual Shark Tank Competition.
摘要 Eysz公司正在开发一种算法和软件解决方案,以可靠和经济地检测癫痫发作, 使用现有的智能玻璃技术。在一项概念验证研究中,Eysz能够检测到 >75%的失神发作持续时间超过10 s,仅使用视力测量变量(例如,瞳孔大小 位置、偏心率、眨眼频率)。Eysz试图建立 通过开发和商业化高度敏感和特异性的癫痫发作检测算法, 使用眼球运动数据作为输入,最终扩展到其他癫痫发作类型。这项技术有 有可能改变癫痫患者癫痫发作的检测和治疗,这是最常见的 世界范围内的神经系统疾病。及时治疗可以减少额外发作的机会一半,使 早期发现和治疗至关重要。不幸的是,检测和诊断可能是困难的,使用电流 这类药物可以用于治疗癫痫病,特别是那些几乎没有明显症状的癫痫病,如失神发作。黄金 用于检测和表征癫痫发作活动的标准是具有视频的脑电图(EEG)监测 随后由经过培训的临床医生进行复查,但这并不能很好地转化为门诊设置。而 已经进行了开发动态EEG的尝试,但是这些具有显著的缺点,包括患者不好, 可接受性,检测能力差,继续依赖异步审查。其他非EEG- 基于运动检测的设备仅限于强直阵挛发作,这是造成小部分癫痫发作的原因。 所有的癫痫发作因此,迫切需要在诊所外可靠地检测癫痫发作,以提供诊断。 医生提供必要的信息,以指导治疗决策。为了满足这一需求,Eysz 开发数字健康平台,利用现有的眼动追踪技术来满足这一重大未满足的需求 这是一个技术上可行、资本效率高、稳健和创新的市场。Eysz计划利用现有的 智能玻璃技术输出必要的视力测量数据,以供我们的检获检测进行分析 算法我们还将建立数据库、软件系统和用户界面,使生成的数据能够 存储在云中并由医生可视化/分析。在第一阶段SBIR中,Eysz将推进 通过以下方式开发癫痫发作检测算法:1)获得≥100例患者的视力视频和EEG数据 来自多个患者的失神发作,以及2)使用ML和统计方法来优化用于 使用眼动追踪数据识别失神发作,目标灵敏度为85%,特异性为90%。 从这项研究中吸取的经验教训将(通过不同的培训集)应用于其他癫痫发作类型,例如 局灶性意识受损(以前称为复杂部分性)癫痫发作,是成人中最常见的癫痫发作类型。 这项工作对该领域至关重要,癫痫基金会和 在癫痫基金会的第八届年度鲨鱼坦克中获得评委和人民的选择奖 竞争

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Rachel Kuperman其他文献

Rachel Kuperman的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Rachel Kuperman', 18)}}的其他基金

A Mobile Health Application to Detect Absence Seizures using Hyperventilation and Eye-Movement Recordings
一款使用过度换气和眼动记录检测失神癫痫发作的移动健康应用程序
  • 批准号:
    10696649
  • 财政年份:
    2023
  • 资助金额:
    $ 13.69万
  • 项目类别:
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
  • 批准号:
    10421230
  • 财政年份:
    2021
  • 资助金额:
    $ 13.69万
  • 项目类别:
Algorithm for the Real-Time Detection of Absence Seizures from Oculometric Data
根据眼科数据实时检测失神发作的算法
  • 批准号:
    10372655
  • 财政年份:
    2020
  • 资助金额:
    $ 13.69万
  • 项目类别:

相似海外基金

Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
  • 批准号:
    2473795
  • 财政年份:
    2024
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
  • 批准号:
    23K10540
  • 财政年份:
    2023
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
  • 批准号:
    23K16596
  • 财政年份:
    2023
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
  • 批准号:
    2245652
  • 财政年份:
    2023
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Standard Grant
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
  • 批准号:
    23K16412
  • 财政年份:
    2023
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
  • 批准号:
    499112
  • 财政年份:
    2023
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Operating Grants
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
  • 批准号:
    10429480
  • 财政年份:
    2022
  • 资助金额:
    $ 13.69万
  • 项目类别:
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
  • 批准号:
    22K17540
  • 财政年份:
    2022
  • 资助金额:
    $ 13.69万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
  • 批准号:
    10668160
  • 财政年份:
    2022
  • 资助金额:
    $ 13.69万
  • 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
  • 批准号:
    10621820
  • 财政年份:
    2022
  • 资助金额:
    $ 13.69万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了