Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
基本信息
- 批准号:10267208
- 负责人:
- 金额:$ 24.75万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-21 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:AcousticsAddressAdoptedAnatomyAnimal ModelAnimalsAreaAtmosphereBacterial ProteinsBasic ScienceBiochemicalBiochemistryBiological ProcessBiologyBiomedical ResearchCaenorhabditis elegansCell Culture TechniquesCell SizeCell divisionCell physiologyCellsClinicalCollaborationsCouplingDepositionDevicesDiagnosisDiseaseEngineeringEscherichia coliFaceFungal ProteinsGasesGastrointestinal tract structureGene ExpressionGenetic EngineeringGenotypeGoalsGreen Fluorescent ProteinsHumanHydrophobic SurfacesHydrophobicityImageKnowledgeLeadershipLightLocationMagnetic Resonance ImagingMammalsManuscriptsMembrane ProteinsMentorsMethodsMicrobeMicroscopeModernizationMonitorMusNanostructuresNatureNeuronsOpsinOpticsOrganismOther GeneticsPathway interactionsPenetrationPermeabilityPhysiologic pulseProbioticsProductionPropertyProtein EngineeringProteinsProtocols documentationRecording of previous eventsResearchResearch InstituteResearch PersonnelRodentSignal PathwaySignal TransductionStainsSurfaceSystemTechniquesTechnologyTestingTherapeuticThickTimeTissuesTrainingTransgenesTransmission Electron MicroscopyUltrasonographyVesicleWaterWorkanimal imagingbasebiological systemsclinical translationcommensal microbesdesignfluorescence imaginggut microbeshuman subjectin vivoin vivo imaginginstrumentationinterestinventionmagnetic fieldmicrobiomemicroscopic imagingmisfolded proteinmonolayernanometernew technologynext generationnoveloptical imagingoptogeneticsparticlepost-doctoral trainingpressureprobiotic therapyprogramsresearch and developmentskillsspatiotemporalsymposiumsynthetic biologytherapy developmenttool
项目摘要
Project Summary / Abstract
New ways to observe and manipulate cellular function have revolutionized our understanding of biology.
Such methods have undergone multiple paradigm shifts in history, from Hooke's microscope and Cajal's
staining of neurons, to modern fluorescent imaging based on green fluorescent protein (GFP) and opsin-based
optogenetics. These modern genetically encoded methods, defined by their use of protein-based agents that
can be expressed by cells, provide key capabilities such as cell-specific targeted expression, continued
production in dividing cells, and coupling with state-of-the-art genetic engineering methods. However, as most
of these protein tools rely on optical interactions, they are fundamentally limited by the ~ 1 mm penetration
depth of light into opaque tissue. As the objects of study increase in size from cell cultures and translucent
organisms such as C. elegans, via small rodents, to human beings, this limitation becomes increasingly
severe. To overcome this technological challenge, I aim to develop next-generation methods that are both
genetically encoded and able to communicate with deeply penetrant forms of energy. In particular, I will
leverage the unique physical and biochemical properties of gas vesicles (GVs), a class of gas-filled protein-
only nanostructures discovered in certain photosynthetic microbes. In Aim 1, a new method, “sonomagnetic
imaging” (SMI), will be developed, which takes advantage of GVs' dual ability to induce contrast for magnetic
resonance imaging (MRI) and interact with ultrasound pulses for selective erasing of such contrast. In parallel,
a new method to control gene expression, sonomechanical control (SMC), will be developed in Aim 2 wherein
ultrasound pulses can collapse GVs and trigger signaling pathways to activate gene expression at high spatial
precision and low energy deposition. In Aim 3, I will integrate these novel methods to the task of engineering
spatiotemporally trackable and controllable mammalian gut microbes. The completion of these aims will
establish a platform for designing probiotics that can be monitored for their function and controlled externally by
clinicians to deliver therapies at precise locations and times. Furthermore, the invention of these technologies
will stimulate broad interest in other biomedical research that requires sensitive imaging and control of cellular
function in deep-lying tissues. The proposal also describes research expertise training, conference attendance
and the acquisition of leadership skills that, altogether, will prepare me as a competitive candidate to establish
an independent research program at a major research institute and stimulate advances towards my long-term
goal of developing imaging and control technologies to study intact biological systems.
项目总结/摘要
观察和操纵细胞功能的新方法彻底改变了我们对生物学的理解。
此类方法在历史上经历了多次范式转变,从胡克的显微镜到卡哈尔的显微镜
从神经元染色到基于绿色荧光蛋白(GFP)和基于视蛋白的现代荧光成像
光遗传学这些现代基因编码方法,通过使用基于蛋白质的试剂来定义,
可以由细胞表达,提供关键能力,如细胞特异性靶向表达,续
在分裂细胞中生产,并与最先进的基因工程方法结合。然而,由于大多数
这些蛋白质工具依赖于光学相互作用,它们从根本上受到~ 1 mm穿透的限制。
光进入不透明组织的深度。随着研究对象从细胞培养和半透明的大小增加
生物体如C.从小型啮齿动物到人类,这种限制变得越来越多。
严重。为了克服这一技术挑战,我的目标是开发下一代方法,
基因编码并能与深层渗透的能量形式交流。特别是,我将
利用气体囊泡(GVs)的独特物理和生化特性,这是一类充满气体的蛋白质,
只在某些光合微生物中发现了纳米结构。在目标1中,提出了一种新的方法,“声磁
成像”(SMI),将开发,它利用GV的双重能力,以诱导磁对比度
共振成像(MRI)并与超声脉冲相互作用以选择性地擦除这种对比度。同时,
在目标2中将开发一种控制基因表达的新方法,声机械控制(SMC),其中
超声脉冲可以使GV塌陷,并触发信号通路,以高空间分辨率激活基因表达。
精度和低能量沉积。在目标3中,我将把这些新方法整合到工程任务中
时空可追踪和可控的哺乳动物肠道微生物。这些目标的实现将
建立一个平台,设计益生菌,可以监测其功能和外部控制,
临床医生在精确的位置和时间提供治疗。这些技术的发明,
这将激发人们对其他生物医学研究的广泛兴趣,这些研究需要敏感的成像和对细胞的控制。
在深层组织中发挥作用。该提案还描述了研究专业知识培训,会议出席情况
以及领导技能的获得,这将使我成为一个有竞争力的候选人,
一个独立的研究计划,在一个主要的研究机构,并刺激对我的长期进展
目标是发展成像和控制技术,以研究完整的生物系统。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
George J Lu其他文献
George J Lu的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('George J Lu', 18)}}的其他基金
Ultrasensitive acoustic reporter proteins with engineered rupture-resistant shells
具有工程抗破裂外壳的超灵敏声学报告蛋白
- 批准号:
10684322 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
Ultrasensitive acoustic reporter proteins with engineered rupture-resistant shells
具有工程抗破裂外壳的超灵敏声学报告蛋白
- 批准号:
10511817 - 财政年份:2022
- 资助金额:
$ 24.75万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
10471365 - 财政年份:2020
- 资助金额:
$ 24.75万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
10260761 - 财政年份:2020
- 资助金额:
$ 24.75万 - 项目类别:
Sonomagnetic Imaging and Sonomechanical Control of Biological Processes in Deep Tissues
深层组织生物过程的声磁成像和声机械控制
- 批准号:
9750745 - 财政年份:2018
- 资助金额:
$ 24.75万 - 项目类别:
相似海外基金
Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
- 批准号:
MR/S03398X/2 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
- 批准号:
2338423 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
- 批准号:
EP/Y001486/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
- 批准号:
MR/X03657X/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
- 批准号:
2348066 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
- 批准号:
AH/Z505481/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
- 批准号:
2341402 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
- 批准号:
AH/Z505341/1 - 财政年份:2024
- 资助金额:
$ 24.75万 - 项目类别:
Research Grant