Unraveling subcellular heterogeneity of molecular coordination by machine learning

通过机器学习揭示分子协调的亚细胞异质性

基本信息

  • 批准号:
    10267171
  • 负责人:
  • 金额:
    $ 44.25万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2019
  • 资助国家:
    美国
  • 起止时间:
    2019-09-15 至 2024-08-31
  • 项目状态:
    已结题

项目摘要

PROJECT SUMMARY/ABSTRACT Recent advances in fluorescence microscopy allow researchers to acquire an unprecedented amount of live cell image data at high spatial and temporal resolutions. However, these images pose a significant challenge for data analyses due to massive subcellular heterogeneity. Although conventional computer vision algorithms have facilitated automatic image analysis, traditional ensemble-averaging of subcellular heterogeneity could lead to the loss of critical mechanistic details. Given the current rapid growth of cell biological data from new technological development, it is nearly impossible to keep up with the data generation if we solely rely on human intelligence for algorithm development and data analysis. Recently, machine learning (ML) is making tremendous progress and has shown that computers can outperform humans in the analysis of complex high dimensional datasets. Conventional ML application in cell biology, however, is usually limited to fixed cells or low spatial resolution setting (single cell resolution), which is limited in analyzing dynamic subcellular information. To fill this voids, we have been developing an ML framework for fluorescence live cell image analyses at the subcellular level. In our previous study, we established the method to deconvolve the subcellular heterogeneity of lamellipodial protrusion from live cell imaging, which identified distinct subcellular protrusion phenotypes with differential drug susceptibility. Thus, our goal is to advance this ML framework and address technical and cell biological challenges in the live cell analysis. The overall goal of our research is two- fold: i) advancing a new ML framework for cell biological research (technological development) and ii) applying our ML framework to integrate mechanobiology and metabolism in cell protrusion (targeted cell biological study). First, we will advance our ML framework for the deconvolution of subcellular heterogeneity of protrusion and molecular coordination in live cells. This method will integrate time-series modeling and ML to deconvolve subcellular molecular coordination. Second, we will develop deep learning based high-throughput fluorescence live cell imaging. This will include microscope automation, resolution enhancement, and data synthesis, which will build up the massive dataset for ML. Third, we will apply our ML framework to study the mechanosensitivity of subcellular bioenergetic status in cell protrusion. We will evaluate how AMPK reacts to mechanical forces and controls the subcellular organization of actin assembly and mitochondria to promote energy-demanding protrusion phenotypes. Our ML framework will bring unprecedented analytical power to cell biology by analyzing a large numbers of individual cells at the high spatial resolution and automatically extracting a multitude of subcellular phenotypes. This framework can be applied to various areas of cell biology such as cytoskeleton, membrane remodeling, and membrane-bound organelles.
项目总结/文摘

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Kwonmoo Lee其他文献

Kwonmoo Lee的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Kwonmoo Lee', 18)}}的其他基金

Purchase of a light microscopy system for high-throughput and high-resolution live cell imaging
购买用于高通量和高分辨率活细胞成像的光学显微镜系统
  • 批准号:
    10582350
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Unraveling subcellular heterogeneity of molecular coordination by machine learning
通过机器学习揭示分子协调的亚细胞异质性
  • 批准号:
    10281243
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Spatiotemporal forecasting of COVID-19 by integrating machine learning and epidemiological modeling
通过整合机器学习和流行病学模型对 COVID-19 进行时空预测
  • 批准号:
    10463952
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Unraveling subcellular heterogeneity of molecular coordination by machine learning
通过机器学习揭示分子协调的亚细胞异质性
  • 批准号:
    10706485
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Unraveling subcellular heterogeneity of molecular coordination by machine learning
通过机器学习揭示分子协调的亚细胞异质性
  • 批准号:
    10473726
  • 财政年份:
    2019
  • 资助金额:
    $ 44.25万
  • 项目类别:
Spatiotemporal Coordination of Formin and Arp2/3 in Epithelial Cell Migration
Formin 和 Arp2/3 在上皮细胞迁移中的时空协调
  • 批准号:
    8417910
  • 财政年份:
    2012
  • 资助金额:
    $ 44.25万
  • 项目类别:
Spatiotemporal Coordination of Formin and Arp2/3 in Epithelial Cell Migration
Formin 和 Arp2/3 在上皮细胞迁移中的时空协调
  • 批准号:
    8251682
  • 财政年份:
    2012
  • 资助金额:
    $ 44.25万
  • 项目类别:

相似海外基金

Rational design of rapidly translatable, highly antigenic and novel recombinant immunogens to address deficiencies of current snakebite treatments
合理设计可快速翻译、高抗原性和新型重组免疫原,以解决当前蛇咬伤治疗的缺陷
  • 批准号:
    MR/S03398X/2
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Fellowship
CAREER: FEAST (Food Ecosystems And circularity for Sustainable Transformation) framework to address Hidden Hunger
职业:FEAST(食品生态系统和可持续转型循环)框架解决隐性饥饿
  • 批准号:
    2338423
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Continuing Grant
Re-thinking drug nanocrystals as highly loaded vectors to address key unmet therapeutic challenges
重新思考药物纳米晶体作为高负载载体以解决关键的未满足的治疗挑战
  • 批准号:
    EP/Y001486/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
Metrology to address ion suppression in multimodal mass spectrometry imaging with application in oncology
计量学解决多模态质谱成像中的离子抑制问题及其在肿瘤学中的应用
  • 批准号:
    MR/X03657X/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Fellowship
CRII: SHF: A Novel Address Translation Architecture for Virtualized Clouds
CRII:SHF:一种用于虚拟化云的新型地址转换架构
  • 批准号:
    2348066
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Standard Grant
The Abundance Project: Enhancing Cultural & Green Inclusion in Social Prescribing in Southwest London to Address Ethnic Inequalities in Mental Health
丰富项目:增强文化
  • 批准号:
    AH/Z505481/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10107647
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    EU-Funded
BIORETS: Convergence Research Experiences for Teachers in Synthetic and Systems Biology to Address Challenges in Food, Health, Energy, and Environment
BIORETS:合成和系统生物学教师的融合研究经验,以应对食品、健康、能源和环境方面的挑战
  • 批准号:
    2341402
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Standard Grant
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
  • 批准号:
    10106221
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    EU-Funded
Recite: Building Research by Communities to Address Inequities through Expression
背诵:社区开展研究,通过表达解决不平等问题
  • 批准号:
    AH/Z505341/1
  • 财政年份:
    2024
  • 资助金额:
    $ 44.25万
  • 项目类别:
    Research Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了