Dynamic Chemical Regulation of Voltage-gated Sodium Channels
电压门控钠通道的动态化学调节
基本信息
- 批准号:10266071
- 负责人:
- 金额:--
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2015
- 资助国家:美国
- 起止时间:2015-01-01 至 2023-06-30
- 项目状态:已结题
- 来源:
- 关键词:Action PotentialsAcuteAcute PainAffectAgonistAnimalsArrhythmiaBiochemicalBiochemistryBiological AssayBiophysical ProcessBiophysicsBrainCannabinoidsCell LineChemicalsChemistryCollaborationsCoupledCyclic AMPDataDiseaseDoseDrug TargetingElectrophysiology (science)ElementsEndocannabinoidsEpilepsyFatty AcidsG Protein-Coupled Receptor SignalingG-Protein-Coupled ReceptorsGTP-Binding Protein alpha Subunits, GsGTP-Binding ProteinsGene DeletionGenerationsGilles de la Tourette syndromeGlycerolGoalsHuntington DiseaseIon ChannelIon Channel GatingKnowledgeLigandsLipidsMalignant NeoplasmsMediatingMethodsMolecularMuscle CellsMuscle SpasticityMuscle functionNerveNeurobiologyNeuronal PlasticityNeuronsNeuropathyPainPain managementParalysedPatch-Clamp TechniquesPathway interactionsPatternPeripheral Nervous System DiseasesPharmaceutical PreparationsPharmacologyPhosphatidylinositolsPhysiologicalPositioning AttributeProtein IsoformsProteinsPublishingReagentRegulationSecond Messenger SystemsSeizuresSignal PathwaySignal TransductionSliceSodium ChannelSpasmSystemTestingVeteransWild Type MouseWorkanandamidecannabinoid receptorclinically relevantexperienceexperimental studyimprovedinnovationinorganic phosphateinterestkidney cellknock-downlive cell imagingmilitary veteranmouse modelneocorticalneuronal cell bodyneuronal excitabilityneurotransmissionnew therapeutic targetnovelnovel therapeuticspatch clampperiodic paralysisreceptorscreeningsensorside effectsmall hairpin RNAtoolvoltage
项目摘要
Voltage-gated sodium channels (VGSCs) are essential for action potential generation. Regulation of voltage-
gated ion channel function is an important pathway by which neuronal signaling and brain function is regulated,
and G-protein coupled receptors (GPCRs) form a major element of the endogenous transduction mechanisms
by which this occurs. However, unlike other ion channels, VGSCs have been believed to be relatively
insensitive to modulation by GPCR signaling. We have recently identified a pathway that is modulated by
agents known to interact with the GPCR CB1 (cannabinoid receptor). This pathway is widespread, present in
the vast majority of neocortical neurons, and strong enough to completely and reversibly block VGSC currents
when maximally stimulated. This novel, dynamic signaling pathway is positioned to substantially modulate
neuronal excitability and brain function. Detailed knowledge about the underlying mechanisms is crucial to
understand its many effects. These preliminary findings may fundamentally change our understanding of the
mechanism of action of endocannabinoids. The objectives of this proposal are to determine how
endocannabinoids regulate VGSCs. We will complete this undertaking by studying VGSC function using patch-
clamp methods and live cell imaging in neurons in acute neocortical brain slices, following acute isolation, and
in primary cultures. We will employ mouse models. We are ideally suited to perform this project because of our
preliminary data and expertise. Successful completion of these specific aims will characterize the mechanism
of action of inhibition of sodium channels by this novel pathway and characterize a new mechanism by which
endocannabinoids can affect neuroplasticity. Our rationale is that the identification and characterization of a
novel and prevalent receptor(s) and downstream pathway will facilitate our understanding of a prevalent and
potentially powerful neurobiological signaling pathway. Elucidation of the pathway will provide a detailed
characterization of a new drug target that may be relevant to a wide range of diseases characterized by
unbalanced excitability.
电压门控钠通道(VGSC)对于动作电位的产生是必不可少的。电压调节-
门控离子通道功能是调节神经元信号和脑功能的重要途径,
和G蛋白偶联受体(GPCR)构成了内源性转导机制的主要元件
发生这种情况。然而,与其他离子通道不同,VGSC被认为是相对独立的。
对GPCR信号转导的调节不敏感。我们最近发现了一种由
已知与GPCR CB 1(大麻素受体)相互作用的药物。这种途径广泛存在于
绝大多数的新皮层神经元,并强大到足以完全和可逆地阻断VGSC电流
最大限度地刺激。这种新的,动态的信号通路被定位为实质上调节
神经元兴奋性和大脑功能。对潜在机制的详细了解对于
了解它的许多影响。这些初步发现可能会从根本上改变我们对
内源性大麻素的作用机制。本提案的目标是确定如何
内源性大麻素调节VGSC。我们将通过使用补丁研究VGSC功能来完成这项任务-
在急性分离后,在急性新皮层脑切片中的神经元中的钳夹方法和活细胞成像,以及
在原代培养物中。我们将使用小鼠模型。我们非常适合执行这个项目,因为我们的
初步数据和专业知识。成功完成这些具体目标将是该机制的特点
通过这种新的途径抑制钠通道的作用,并表征了一种新的机制,
内源性大麻素可以影响神经可塑性。我们的基本原理是,
新的和普遍的受体和下游途径将有助于我们理解一种普遍的和
潜在的强大的神经生物学信号通路。阐明该途径将提供详细的
新的药物靶点的表征可能与广泛的疾病相关,
不平衡的兴奋性
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stephen M Smith其他文献
Valproic acid and HIV-1 latency: beyond the sound bite
丙戊酸和 HIV-1 潜伏期:超越原话
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
Stephen M Smith - 通讯作者:
Stephen M Smith
Comprehensive Molecular Characterization of Polymorphous Adenocarcinoma, Cribriform Subtype: Identifying Novel Fusions and Fusion Partners.
多形性腺癌,筛状亚型的综合分子特征:识别新的融合和融合伴侣。
- DOI:
10.1016/j.modpat.2023.100305 - 发表时间:
2023 - 期刊:
- 影响因子:0
- 作者:
E. Hahn;Bin Xu;N. Katabi;S. Dogan;Stephen M Smith;B. Perez–Ordoñez;Paras B. Patel;Christina MacMillan;Daniel J. Lubin;J. Gagan;I. Weinreb;J. Bishop - 通讯作者:
J. Bishop
New York City HIV superbug: fear or fear not?
纽约市艾滋病毒超级细菌:恐惧还是不恐惧?
- DOI:
- 发表时间:
2005 - 期刊:
- 影响因子:3.3
- 作者:
Stephen M Smith - 通讯作者:
Stephen M Smith
Studying neuroanatomy using MRI
使用磁共振成像研究神经解剖学
- DOI:
10.1038/nn.4501 - 发表时间:
2017-02-23 - 期刊:
- 影响因子:20.000
- 作者:
Jason P Lerch;André J W van der Kouwe;Armin Raznahan;Tomáš Paus;Heidi Johansen-Berg;Karla L Miller;Stephen M Smith;Bruce Fischl;Stamatios N Sotiropoulos - 通讯作者:
Stamatios N Sotiropoulos
Stephen M Smith的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stephen M Smith', 18)}}的其他基金
Equipment Supplement: Sodium Channel Control of Neuronal Excitability
装备补充:钠通道控制神经元兴奋性
- 批准号:
10382711 - 财政年份:2020
- 资助金额:
-- - 项目类别:
相似海外基金
Selective actin remodeling of sensory neurons for acute pain management
感觉神经元的选择性肌动蛋白重塑用于急性疼痛管理
- 批准号:
10603436 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
- 批准号:
10778757 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Clinical Outcome Assessments for Acute Pain Therapeutics in Infants and young Children (COA APTIC)
婴幼儿急性疼痛治疗的临床结果评估 (COA APTIC)
- 批准号:
10783106 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Development of A Focused Ultrasound Device for Noninvasive, Peripheral Nerve Blockade to Manage Acute Pain
开发用于非侵入性周围神经阻断来治疗急性疼痛的聚焦超声装置
- 批准号:
10740796 - 财政年份:2023
- 资助金额:
-- - 项目类别:
Predicting Pediatric Sickle Cell Disease Acute Pain Using Mathematical Models Based on mHealth Data
使用基于移动健康数据的数学模型预测儿童镰状细胞病急性疼痛
- 批准号:
10599401 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Non-Contingent Acute Pain Stress Drives Analgesic Protection in Rats.
非偶然急性疼痛应激驱动大鼠镇痛保护。
- 批准号:
575854-2022 - 财政年份:2022
- 资助金额:
-- - 项目类别:
Alexander Graham Bell Canada Graduate Scholarships - Master's
Prefrontal Cortex Hemodynamic Responses to Mindfulness Meditation and Acute Pain
前额皮质血流动力学对正念冥想和急性疼痛的反应
- 批准号:
467076 - 财政年份:2021
- 资助金额:
-- - 项目类别:
Studentship Programs
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
- 批准号:
9979265 - 财政年份:2020
- 资助金额:
-- - 项目类别:
A Multimodal Approach for Monitoring Prolonged Acute Pain in Neonates
监测新生儿长期急性疼痛的多模式方法
- 批准号:
10218273 - 财政年份:2020
- 资助金额:
-- - 项目类别: