SBIR Phase I Topic 402: Artificial Intelligence-Aided Imaging for Cancer Prevention, Diagnosis, and Monitoring
SBIR 第一阶段主题 402:用于癌症预防、诊断和监测的人工智能辅助成像
基本信息
- 批准号:10269836
- 负责人:
- 金额:$ 40万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-16 至 2021-06-15
- 项目状态:已结题
- 来源:
- 关键词:AddressAlgorithmsArtificial IntelligenceCervical lymph node groupClinicalComplexComputer softwareDataDetectionDiagnosisEvaluationHead and Neck CancerHumanImageInterobserver VariabilityLearningMagnetic Resonance ImagingMalignant NeoplasmsMeasuresModalityMonitorPatient CarePerformancePhasePrivatizationReportingSiteSmall Business Innovation Research GrantSoftware FrameworkVisualizationautomated segmentationbasecancer diagnosiscancer imagingcancer preventionclinical practiceclinically relevantcloud basedcostimaging modalitylymph nodesnovelsegmentation algorithmusability
项目摘要
Image-based evaluation of lymph nodes is an essential step in cancer diagnosis, treatment and monitoring. Current clinical practice mostly uses qualitative or semi-quantitative measures in evaluation and thus suffers from inaccuracy due to intra- and inter-observer variability and increased human efforts. This becomes a more serious issue in head and neck cancers due to the large number of clinically relevant lymph nodes. In this project an AI-based automatic segmentation software will be developed for quantitative cervical lymph node evaluation to increase the accuracy and reduce the cost. However, there are a few challenges in developing and deploying such a software due to different clinical practices such as usage of different modalities (MRI and/or CT) and complex clinical workflow. To address these challenges, a novel AI algorithm that can handle the variability in imaging modalities and support incremental learning using site-specific data to enhance its robustness will be developed; a private-cloud-based software framework with high usability will then be developed to incorporate this algorithm and provide advanced visualization and reporting for clinical usage. This software will have high impact on all stages of patient care for head and neck cancers and can be further extended to other cancers.
基于图像的淋巴结评估是癌症诊断、治疗和监测的重要步骤。目前的临床实践主要使用定性或半定量的措施,在评价,因此遭受不准确性,由于内部和观察者之间的变化和增加的人力。由于大量的临床相关淋巴结,这在头颈癌中成为更严重的问题。本项目将开发一种基于人工智能的自动分割软件,用于定量颈部淋巴结评估,以提高准确性并降低成本。然而,由于不同的临床实践,如使用不同的模态(MRI和/或CT)和复杂的临床工作流程,在开发和部署这样的软件方面存在一些挑战。为了应对这些挑战,将开发一种新型的AI算法,该算法可以处理成像模式的可变性,并支持使用特定于站点的数据进行增量学习,以增强其鲁棒性;然后将开发一个基于私有云的软件框架,该框架具有高可用性,以整合该算法,并为临床使用提供高级可视化和报告。该软件将对头颈癌患者护理的所有阶段产生重大影响,并可进一步扩展到其他癌症。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
XUE FENG其他文献
XUE FENG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('XUE FENG', 18)}}的其他基金
Multi-Modality Imaging-Based Quantitative Pre/During/Post-Treatment Lymph Node Monitoring in Cancers
基于多模态成像的癌症治疗前/治疗期间/治疗后淋巴结定量监测
- 批准号:
10973851 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
SBIR Phase I Topic 402: Artificial Intelligence-Aided Imaging for Cancer Prevention, Diagnosis, and Monitoring
SBIR 第一阶段主题 402:用于癌症预防、诊断和监测的人工智能辅助成像
- 批准号:
10347278 - 财政年份:2020
- 资助金额:
$ 40万 - 项目类别:
相似海外基金
CAREER: CAS-Climate: Forecast-informed Flexible Reservoir System Modeling Enabled by Artificial Intelligence Algorithms Using Subseasonal-to-Seasonal Hydroclimatological Forecasts
职业:CAS-气候:利用次季节到季节水文气候预测的人工智能算法实现基于预测的灵活水库系统建模
- 批准号:
2236926 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Continuing Grant
Artificial intelligence algorithms to predict risk of injury in racehorses.
预测赛马受伤风险的人工智能算法。
- 批准号:
LP210200798 - 财政年份:2023
- 资助金额:
$ 40万 - 项目类别:
Linkage Projects
Performance-Based Earthquake Engineering 2.0: Machine-Learning and Artificial Intelligence Algorithms for seismic hazard and vulnerability.
基于性能的地震工程 2.0:地震灾害和脆弱性的机器学习和人工智能算法。
- 批准号:
2765246 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Studentship
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221742 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
The 'risk of risk': remodelling artificial intelligence algorithms for predicting child abuse.
“风险中的风险”:重塑人工智能算法以预测虐待儿童行为。
- 批准号:
ES/R00983X/2 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Research Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
- 批准号:
2221741 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Standard Grant
Developing a platform for deep phenotyping of heart failure with preserved ejection fraction using raw, widely-available, multi-modality data and artificial intelligence algorithms
使用原始、广泛可用的多模态数据和人工智能算法,开发一个对射血分数保留的心力衰竭进行深度表型分析的平台
- 批准号:
10683803 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Early-assymptomatic-dementia prediction based on a white-matter biomarker using Artificial Intelligence algorithms
使用人工智能算法基于白质生物标志物的早期无症状痴呆症预测
- 批准号:
460558 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Concluding 50 Years of Research in Wireless Communications: Algorithms for Artificial Intelligence and Optimization in Networks Beyond 5G and Thereafter
总结无线通信 50 年的研究:5G 及以后网络中的人工智能和优化算法
- 批准号:
RGPIN-2022-04417 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别:
Discovery Grants Program - Individual
De novo development of small CRISPR-Cas proteins using artificial intelligence algorithms
使用人工智能算法从头开发小型 CRISPR-Cas 蛋白
- 批准号:
10544772 - 财政年份:2022
- 资助金额:
$ 40万 - 项目类别: