Multi-Modality Imaging-Based Quantitative Pre/During/Post-Treatment Lymph Node Monitoring in Cancers

基于多模态成像的癌症治疗前/治疗期间/治疗后淋巴结定量监测

基本信息

  • 批准号:
    10973851
  • 负责人:
  • 金额:
    $ 40万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2023
  • 资助国家:
    美国
  • 起止时间:
    2023-08-15 至 2024-08-14
  • 项目状态:
    已结题

项目摘要

The correct determination of nodal metastatic disease is imperative for patient management in oncology, since the patient’s prognosis and subsequent treatment are inherently linked to the stage of disease. Detection/segmentation of lymph node on imaging is a tedious, highly time-consuming process that is inherently subject to intra-/inter-observer variability. Malignancy classification of the lymph node improves both the diagnostic evaluation and treatment planning. An AI software, OncoAI, was successfully developed in Phase I that automatically detects and segments enlarged lymph nodes from MRI and CT and enables fully automated RECIST measurements. The overall goal of this Phase II proposal is to further enhance the performance of the AI models for lymph node detection, segmentation, and measurements and develop additional AI models for malignancy classification leveraging multi-modality imaging. Software functionality and usability will be further improved towards seamless incorporation within the clinical workflow. Finally, a multi-institutional validation study will be conducted to demonstrate the safety and effectiveness of OncoAI in clinical practice and obtain regulatory approval. The proposed aims will set a strong technical and regulatory foundation for OncoAI and contribute to not only commercial success, but also broader impact to the clinical practice of cancer care.
正确确定淋巴结转移性疾病对于肿瘤学中的患者管理至关重要,因为患者的预后和后续治疗与疾病的阶段有内在联系。成像上的淋巴结的检测/分割是一个繁琐、非常耗时的过程,其固有地受到观察者内/观察者间变化的影响。对淋巴结的分类有助于提高诊断评估和治疗计划。AI软件OncoAI在第一阶段成功开发,可自动检测和分割MRI和CT中的肿大淋巴结,并实现全自动RECIST测量。该II期提案的总体目标是进一步增强用于淋巴结检测、分割和测量的AI模型的性能,并开发用于利用多模态成像进行恶性肿瘤分类的其他AI模型。软件功能和可用性将进一步改进,以实现与临床工作流程的无缝整合。最后,将进行多机构验证研究,以证明OncoAI在临床实践中的安全性和有效性,并获得监管部门的批准。拟议的目标将为OncoAI奠定坚实的技术和监管基础,不仅有助于商业成功,还将对癌症护理的临床实践产生更广泛的影响。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

XUE FENG其他文献

XUE FENG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('XUE FENG', 18)}}的其他基金

SBIR Phase I Topic 402: Artificial Intelligence-Aided Imaging for Cancer Prevention, Diagnosis, and Monitoring
SBIR 第一阶段主题 402:用于癌症预防、诊断和监测的人工智能辅助成像
  • 批准号:
    10347278
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
SBIR Phase I Topic 402: Artificial Intelligence-Aided Imaging for Cancer Prevention, Diagnosis, and Monitoring
SBIR 第一阶段主题 402:用于癌症预防、诊断和监测的人工智能辅助成像
  • 批准号:
    10269836
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:

相似海外基金

Development of multi-modality real-time tomographic imaging system using optical interference and photoacoustics
利用光学干涉和光声学的多模态实时断层成像系统的开发
  • 批准号:
    23K11823
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
Multi-scale and multi-modality imaging of neuropathology in VCID
VCID 神经病理学的多尺度、多模态成像
  • 批准号:
    10812034
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Natural language processing and medical imaging analysis for multi-modality computer assisted diagnosis of ophthalmic diseases
自然语言处理和医学影像分析用于眼科疾病多模态计算机辅助诊断
  • 批准号:
    10881194
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Multi-modality optical imaging of single-cell dynamics using supercontinuum light source
使用超连续谱光源的单细胞动力学多模态光学成像
  • 批准号:
    10798646
  • 财政年份:
    2023
  • 资助金额:
    $ 40万
  • 项目类别:
Use of Novel Multi-modality Imaging to Evaluate the Relationship Between Sleep Duration, Vascular Inflammation, and Visceral Adiposity
使用新型多模态成像评估睡眠持续时间、血管炎症和内脏肥胖之间的关系
  • 批准号:
    10687854
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Use of Novel Multi-modality Imaging to Evaluate the Relationship Between Sleep Duration, Vascular Inflammation, and Visceral Adiposity
使用新型多模态成像评估睡眠持续时间、血管炎症和内脏肥胖之间的关系
  • 批准号:
    10525076
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
Multi-modality Synchrotron X-ray Imaging as a Novel Platform for Imaging Joint Function in Response to Mechanical Stimuli
多模态同步加速器 X 射线成像作为机械刺激响应关节功能成像的新平台
  • 批准号:
    RGPIN-2020-04987
  • 财政年份:
    2022
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-modality Synchrotron X-ray Imaging as a Novel Platform for Imaging Joint Function in Response to Mechanical Stimuli
多模态同步加速器 X 射线成像作为机械刺激响应关节功能成像的新平台
  • 批准号:
    RGPIN-2020-04987
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Transport modeling for multi-modality contrast-enhanced imaging
多模态对比增强成像的传输建模
  • 批准号:
    RGPIN-2016-06641
  • 财政年份:
    2021
  • 资助金额:
    $ 40万
  • 项目类别:
    Discovery Grants Program - Individual
Multi-Modality Imaging for Minimally Invasive Surgery
微创手术的多模态成像
  • 批准号:
    2417908
  • 财政年份:
    2020
  • 资助金额:
    $ 40万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了