Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
基本信息
- 批准号:10268200
- 负责人:
- 金额:$ 121.7万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-26 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AcademiaActivities of Daily LivingAdultAftercareAgreementAnatomyBack PainBase of the BrainBiomedical EngineeringBrainCartilageCharacteristicsChronicChronic low back painClinicalClinical ManagementClinical ResearchComplementComplexCorpus striatum structureData AnalysesData AnalyticsDetectionDevelopmentDiagnostic radiologic examinationDiffusionDiffusion Magnetic Resonance ImagingDiseaseEnvironmentEtiologyEvaluationExercise TherapyFunctional ImagingFunctional Magnetic Resonance ImagingFunctional disorderGoldHealth Care CostsHealthcareImageImage AnalysisImaging TechniquesIndividualIndustryInterdisciplinary StudyInterventionIntervertebral disc structureKneeKnee OsteoarthritisLaboratoriesLesionLinkLow Back PainMachine LearningMagnetic Resonance ImagingMeasuresMedialMeniscus structure of jointMethodsModelingMolecularMorbidity - disease rateMorphologyMuscleMusculoskeletalMusculoskeletal PainNerveNerve BlockNeuraxisNeurocognitiveNeurosciencesOrthopedic SurgeryOutcomeOutcome MeasurePainPain managementPatient CarePatient Outcomes AssessmentsPatient imagingPatientsPatternPerformancePhasePlayPositron-Emission TomographyProcessProductivityProtocols documentationRadiology SpecialtyResearchResearch InfrastructureResearch PersonnelRestRoleSamplingSeveritiesSiteSocietiesSourceSpinalSpinal DiseasesStagingStenosisStructureStructure-Activity RelationshipSymptomsTechniquesTechnologyTimeTissuesTranslationsUnited States National Institutes of HealthVariantVendorVertebral columnVisualizationWorkautoencoderbasebone turnoverclinical imagingclinical infrastructureclinical translationclinically relevantcohortcost estimatedata spacedeep learningdisabilitydomain mappingeffectiveness evaluationexperiencefeature detectiongray matterhands-on learninghuman subjectimage reconstructionimaging Segmentationimprovedintervertebral disk degenerationmulti-task learningmultidisciplinaryneurosurgerynovelpreventprogramsprospectivequantitative imagingreconstructionresearch and developmentresearch facilityresponsescoliosissynaptic functiontask analysistechnology research and developmenttooltool development
项目摘要
PROJECT SUMMARY/ABSTRACT
Disorders of the spine have a tremendous impact on society; both physically through the morbidity of afflicted
individuals, and financially, through lost productivity and increased health care costs. Despite the significance
of this problem, the etiology of symptoms is diverse and unclear in many patients, and there are few reliable
methods by which to prospectively determine the appropriate course of patient care and to objectively evaluate
the effectiveness of various interventions. Challenges contributing to this major healthcare dilemma include
numerous sources of back pain, difficulty in visualization of responsible tissues using any single imaging
technique and difficulty in the localization of pain and contributing molecular processes. Magnetic Resonance
imaging (MR) has been used to characterize disc, muscle, nerves and Positron Emission Tomography (PET)
has been used to study bone turnover, and facet disease in subjects with lower back pain.
The research and tool development proposed in this UH2/UH3 takes the critical next step in the clinical
translation of faster, quantitative magnetic resonance imaging (MR) of patients with lower back pain. New
optimized techniques and patient studies are required to investigate its clinical potential for quantitatively
characterizing the tissues implicated in lower back pain, and objective evaluation of pain. Our proposed
multidisciplinary Technology Research Site (Tech Site) of the NIH Back Pain Consortium (BACPAC) will
develop Phase IV TTMs (Research and Development for Technology Optimization) to leverage two key
technical advancements – development of machine learning based faster MR acquisition methods, and
machine learning for image segmentation and extraction of objective disease related features from images. We
will develop, validate, and deploy end-to-end deep learning-based technologies (TTMs) for accelerated image
reconstruction, tissue segmentation, detection of spinal degeneration, to facilitate automated, robust
assessment of structure-function relationships between spine characteristics, neurocognitive pain response,
and patient reported outcomes. To accomplish this important project, we have assembled a highly-experienced
multidisciplinary research team combining extensive expertise MR bioengineering, advanced MRI data
analysis, radiology, neuroscience, neurosurgery, orthopedic surgery, multi-dimensional analytics and have
existing research agreements with industry. The research facilities and environment include the clinical and
research infrastructure required for successful completion of the proposed translational project. The team has
disseminated tools before to academia, worked closely with industry and are motivated to totally work with
BACPAC as the plans of the consortium evolve.
项目摘要/摘要
脊柱疾病对社会有着巨大的影响;无论是身体上通过患病的发病率
个人和经济上,通过生产力的损失和医疗保健费用的增加。尽管意义重大
在这一问题中,许多患者的症状病因多样且不明确,
前瞻性地确定患者护理的适当过程并客观地评估
各种干预措施的有效性。造成这一重大医疗保健困境的挑战包括
背部疼痛的多种来源,使用任何单一成像难以可视化责任组织
技术和困难的定位疼痛和贡献的分子过程。磁共振
磁共振成像(MR)已被用于表征椎间盘、肌肉、神经和正电子发射断层扫描(PET)
已被用于研究骨转换和下背痛患者的小关节疾病。
UH 2/UH 3中提出的研究和工具开发在临床上迈出了关键的下一步。
翻译更快,定量磁共振成像(MR)的患者腰痛。新
需要优化的技术和患者研究来研究其临床潜力,
表征与下背痛有关的组织,以及对疼痛的客观评价。我们提出的
NIH背痛联盟(BACPAC)的多学科技术研究中心(Tech Site)将
开发第四阶段TTM(技术优化研究与开发),以利用两个关键
技术进步-基于机器学习的更快MR采集方法的开发,以及
用于图像分割和从图像中提取客观疾病相关特征的机器学习。我们
将开发、验证和部署端到端基于深度学习的技术(TTM),以加速映像
重建,组织分割,检测脊柱退变,以便于自动化,鲁棒性
评估脊柱特征,神经认知疼痛反应,
和患者报告的结果。为了完成这一重要项目,我们组建了一个经验丰富的
多学科研究团队结合了丰富的专业知识MR生物工程,先进的MRI数据
分析,放射学,神经科学,神经外科,整形外科,多维分析,
与工业界的现有研究协议。研究设施和环境包括临床和
成功完成拟议的翻译项目所需的研究基础设施。该团队已经
在向学术界传播工具之前,与工业界密切合作,并有动力完全与
随着财团计划的发展,BACPAC。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Sharmila Majumdar其他文献
Sharmila Majumdar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Sharmila Majumdar', 18)}}的其他基金
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
- 批准号:
10592370 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别:
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
- 批准号:
10792426 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别:
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
- 批准号:
10443016 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
- 批准号:
10683487 - 财政年份:2019
- 资助金额:
$ 121.7万 - 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
- 批准号:
10214771 - 财政年份:2019
- 资助金额:
$ 121.7万 - 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
- 批准号:
10304082 - 财政年份:2019
- 资助金额:
$ 121.7万 - 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
- 批准号:
9897929 - 财政年份:2019
- 资助金额:
$ 121.7万 - 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
- 批准号:
10683143 - 财政年份:2019
- 资助金额:
$ 121.7万 - 项目类别:
相似海外基金
Determining 4-Dimensional Foot Loading Profiles of Healthy Adults across Activities of Daily Living
确定健康成年人日常生活活动的 4 维足部负荷曲线
- 批准号:
2473795 - 财政年份:2024
- 资助金额:
$ 121.7万 - 项目类别:
Studentship
Developing a trunk function assessment for hemiplegics. -For improving activities of daily living-
开发偏瘫患者的躯干功能评估。
- 批准号:
23K10540 - 财政年份:2023
- 资助金额:
$ 121.7万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Relation with the activities of daily living and the subjective values among people with social withdrawal
社交退缩者日常生活活动与主观价值观的关系
- 批准号:
23K16596 - 财政年份:2023
- 资助金额:
$ 121.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
CRII: RI: Understanding Activities of Daily Living in Indoor Scenarios
CRII:RI:了解室内场景中的日常生活活动
- 批准号:
2245652 - 财政年份:2023
- 资助金额:
$ 121.7万 - 项目类别:
Standard Grant
Sources of vulnerability among those using homecare despite having no limitations in Activities of Daily Living. An intersectionality analysis
尽管日常生活活动没有限制,但使用家庭护理的人的脆弱性来源。
- 批准号:
499112 - 财政年份:2023
- 资助金额:
$ 121.7万 - 项目类别:
Operating Grants
Association between Nursing Care and Prognosis and Activities of Daily Living in Acute Stroke patients by using Big Data.
利用大数据研究急性脑卒中患者的护理与预后和日常生活活动的关系。
- 批准号:
23K16412 - 财政年份:2023
- 资助金额:
$ 121.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Effects of a model of nurses-occupational therapists collaborative practice on activities of daily living in elderly patients
护士-职业治疗师合作实践模式对老年患者日常生活活动的影响
- 批准号:
22K17540 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10429480 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别:
Assessing a Novel Virtual Environment that Primes Individuals Living with AD/ADRD to Accomplish Activities of Daily Living.
评估一种新颖的虚拟环境,该环境可以帮助 AD/ADRD 患者完成日常生活活动。
- 批准号:
10668160 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别:
Synergizing home health rehabilitation therapy to optimize patients’ activities of daily living
协同家庭健康康复治疗,优化患者的日常生活活动
- 批准号:
10621820 - 财政年份:2022
- 资助金额:
$ 121.7万 - 项目类别: