Ultra-Fast Knee MRI with Deep Learning

具有深度学习功能的超快速膝关节 MRI

基本信息

项目摘要

ABSTRACT Fast, robust and reliable quantitative knee joint MR imaging would be a significant step forward in studying joint degeneration, injury and osteoarthritis (OA). Automation of compositional and morphological feature extraction of the tissues in the knee it is an essential step for translation to clinical practice of promising quantitative techniques. It would enable the analysis of large patient cohorts and assist the radiologist/clinician in augmenting the value of MRI. Automation of several human tasks has been achieved in the last few years by the usage of Deep Learning techniques. With the availability of large amounts of annotated data and processing power, using the concepts of transforming data to knowledge by the observation of examples, supervised learning can today accomplish challenges never demonstrated before. In addition to image analysis and interpretation, Deep Learning is revolutionizing the acquisition and reconstruction aspects of the pipeline. Models can learn a direct mapping between under sampled k-space and image domain. While Deep Learning application to musculoskeletal imaging showed promising results when applied in a controlled setting, it is well understood that generalization beyond the statistical distribution of the training set is still an unmet challenge. In MRI this translates into poor performances when trained models are tested on different imaging protocols or images acquired on different MRI systems. With this proposal, we aim to leverage on this recent advancement and filling the existing gaps. We aim to study novel integrated models able to simultaneously accelerate MRI acquisition and automate the image processing that can overcome the limitation of single domain application. Fast image acquisition and accurate image post processing are typically considered to be separate problems. However, the neural networks optimization design gives us an opportunity to integrate the two to maximize both acceleration and machine-based image processing and interpretation. We will use both publicly available benchmark dataset (FastMRI) and internally collected dataset to build deep learning models able to accurately reconstruct under sampled MRI acquisitions. We will use a dataset prospectively acquired during the course of this study to validate the clinical applicability of the developed methods. Specifically, we will test the hypothesis that the proposed integrated pipeline can be applied in clinical setting for a fast and intelligent knee scan obtaining image quality comparable to standard acquisition and automated processing accuracy comparable with human reproducibility. Additionally, we propose to make our annotated image datasets and trained models a shared resource, a centralized, open evaluation platform for MRI reconstruction and image post processing techniques.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Sharmila Majumdar其他文献

Sharmila Majumdar的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Sharmila Majumdar', 18)}}的其他基金

Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
  • 批准号:
    10592370
  • 财政年份:
    2022
  • 资助金额:
    $ 57.43万
  • 项目类别:
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
  • 批准号:
    10792426
  • 财政年份:
    2022
  • 资助金额:
    $ 57.43万
  • 项目类别:
Simultaneous Imaging of Tissue Biochemistry and Metabolism associated with Biomechanics in Patella Femoral Joint Osteoarthritis
髌股关节骨关节炎与生物力学相关的组织生物化学和代谢的同步成像
  • 批准号:
    10443016
  • 财政年份:
    2022
  • 资助金额:
    $ 57.43万
  • 项目类别:
Ultra-Fast Knee MRI with Deep Learning
具有深度学习功能的超快速膝关节 MRI
  • 批准号:
    10376339
  • 财政年份:
    2021
  • 资助金额:
    $ 57.43万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10683487
  • 财政年份:
    2019
  • 资助金额:
    $ 57.43万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10214771
  • 财政年份:
    2019
  • 资助金额:
    $ 57.43万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10304082
  • 财政年份:
    2019
  • 资助金额:
    $ 57.43万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    9897929
  • 财政年份:
    2019
  • 资助金额:
    $ 57.43万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10683143
  • 财政年份:
    2019
  • 资助金额:
    $ 57.43万
  • 项目类别:
Technology Research Site for Advanced, Faster Quantitative Imaging for BACPAC
BACPAC 先进、更快的定量成像技术研究网站
  • 批准号:
    10268200
  • 财政年份:
    2019
  • 资助金额:
    $ 57.43万
  • 项目类别:

相似海外基金

EXCESS: The role of excess topography and peak ground acceleration on earthquake-preconditioning of landslides
过量:过量地形和峰值地面加速度对滑坡地震预处理的作用
  • 批准号:
    NE/Y000080/1
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Research Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328975
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Continuing Grant
SHINE: Origin and Evolution of Compressible Fluctuations in the Solar Wind and Their Role in Solar Wind Heating and Acceleration
SHINE:太阳风可压缩脉动的起源和演化及其在太阳风加热和加速中的作用
  • 批准号:
    2400967
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328973
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Continuing Grant
Market Entry Acceleration of the Murb Wind Turbine into Remote Telecoms Power
默布风力涡轮机加速进入远程电信电力市场
  • 批准号:
    10112700
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Collaborative R&D
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328972
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Continuing Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332916
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Standard Grant
Collaborative Research: A new understanding of droplet breakup: hydrodynamic instability under complex acceleration
合作研究:对液滴破碎的新认识:复杂加速下的流体动力学不稳定性
  • 批准号:
    2332917
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Standard Grant
Collaborative Research: FuSe: R3AP: Retunable, Reconfigurable, Racetrack-Memory Acceleration Platform
合作研究:FuSe:R3AP:可重调、可重新配置、赛道内存加速平台
  • 批准号:
    2328974
  • 财政年份:
    2024
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Continuing Grant
Study of the Particle Acceleration and Transport in PWN through X-ray Spectro-polarimetry and GeV Gamma-ray Observtions
通过 X 射线光谱偏振法和 GeV 伽马射线观测研究 PWN 中的粒子加速和输运
  • 批准号:
    23H01186
  • 财政年份:
    2023
  • 资助金额:
    $ 57.43万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了