The interaction of myosin and the thin filament: how mutations cause allosteric dysfunction and their connection to genetic cardiomyopathy
肌球蛋白和细丝的相互作用:突变如何导致变构功能障碍及其与遗传性心肌病的联系
基本信息
- 批准号:10240327
- 负责人:
- 金额:$ 53.71万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2010
- 资助国家:美国
- 起止时间:2010-12-15 至 2024-07-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAllelesAnisotropyArtificial IntelligenceBiologicalBiological AssayBiologyBiophysicsBreath TestsC-terminalCardiacChemistryClinical ManagementComplexComputer AnalysisComputer ModelsContractsCoupledDataData SetDescriptorDevelopmentDifferential Scanning CalorimetryDilated CardiomyopathyDiseaseDisease ProgressionDistantEngineeringEnzymesEventFluorescence AnisotropyFluorescence Resonance Energy TransferFunctional disorderFundingGenerationsGeneticGenetic DiseasesGenetic StructuresGoalsGrantHandHumanHypertrophic CardiomyopathyIn VitroIndividualInduced MutationKineticsKnowledgeLeadLinkMachine LearningManualsMedicalMethodologyMethodsMicrofilamentsModelingMolecularMolecular ConformationMolecular MedicineMolecular MotorsMotorMutationMyosin ATPasePathogenesisPathogenicityPatientsPerceptionPhysiologicalPlayProtein ConformationProtein DynamicsProteinsRegistriesResearchResolutionResourcesRoleSamplingSarcomeresSiteStructureSystemTechniquesTechnologyTestingThick FilamentThin FilamentThinnessTimeTissuesTrainingTransgenic MiceTranslatingValidationVariantWorkalgorithm developmentautomated analysisbasecell motilityclinically relevantdeep learningeducational atmosphereexperimental studyimprovedin vivoin vivo Modelinherited cardiomyopathyinsightmachine learning algorithmmouse modelneural networknext generationnovelphosphorescenceprecision medicineprediction algorithmprogramsquantum chemistryresponsesimulationstopped-flow fluorescencesuccessvariant of unknown significance
项目摘要
Project Summary:
The long-term goal of this research program is to develop a rigorously experimentally validated all-atom
computational model of the cardiac thin filament (CTF) bound to myosin S1 which provides a unique and
accessible platform to identify novel, high resolution disease mechanisms linked to Hypertrophic
Cardiomyopathy (HCM). In the prior funding period, we refined and extended our existing CTF computational
model and successfully employed it to identify unique and clinically relevant allosteric disease mechanisms
including HCM mutation-induced changes in myofilament Ca2+ kinetics, mutation-specific molecular causes of
differential cardiac remodeling and disease progression. This included an in vivo validation via the
development of a novel transgenic mouse model of cTnT-linked dilated cardiomyopathy and a predictive
algorithm to determine the pathogenicity of cTnT mutations that out-performed existing computational
approaches in a preliminary test. The key to these advances has been the ability of the current model to
precisely identify and locate allosteric changes caused by mutations throughout all components of the CTF
followed by closely coupled experimental validation and eventual in vivo model correlation. We now propose to
significantly expand the biological complexity of the model to include myosin S1, the molecular motor that
drives contraction and the second most common genetic cause of HCM. This important and challenging
advance will facilitate a deeper understanding of disease pathogenesis by, for the first time, incorporating the
role of molecular allosteric mechanisms between myosin S1 and thin filament. This new computational –
experimental platform will be used for both mechanistic insight (for example used for the identification of novel
myofilament disease targets,) and the development of a comprehensive deep-learning predictive algorithm to
assign pathogenicity to both myosin and thin filament HCM mutations. The latter represents the first use of
high-resolution structure, dynamics and function to predict HCM disease allele pathogenicity, a central
challenge in the clinical management of these complex patients. Both the training and testing components of
the deep learning development will utilize data from the highly annotated and curated SHaRe HCM registry
thus greatly improving translational power. Two Specific Aims will be pursued: Aim 1 will utilize state of the art
rare event simulation methods developed in one of our groups and refinement of existing unstructured domains
of the CTF via FRET to establish the new model. Aim 2 will employ an extensive program of computational
analysis and subsequent in vitro validation using pathogenic, variants of unknown significance and non-
pathogenic HCM alleles derived from SHaRe to provide inputs to the machine learning environment for
algorithm development. Novel disease mechanisms for myosin and thin filament HCM that include crosstalk
between the two components will also be explored. Elucidation of these mechanisms can be the basis for
robust molecular approaches to disease.
项目概要:
这项研究计划的长期目标是开发一种经过严格实验验证的全原子
心脏细丝(CTF)与肌球蛋白S1结合的计算模型,
可访问的平台,以确定与肥大相关的新型,高分辨率疾病机制
心肌病(HCM)。在上一个资助期,我们改进和扩展了现有的CTF计算
模型,并成功地利用它来确定独特的和临床相关的变构疾病机制
包括HCM突变诱导的肌丝Ca 2+动力学变化,
不同的心脏重塑和疾病进展。这包括通过
一种新的cTnT连锁扩张型心肌病转基因小鼠模型的建立和预测
用于确定cTnT突变的致病性的算法优于现有的计算方法,
在初步测试中接近。这些进步的关键是当前模型的能力,
精确识别和定位CTF所有组分中突变引起的变构变化
随后是紧密结合的实验验证和最终的体内模型关联。我们现建议
显着扩大模型的生物复杂性,包括肌球蛋白S1,分子马达,
导致收缩,也是HCM的第二个最常见的遗传原因。这一重要且具有挑战性的
这一进展将有助于更深入地了解疾病的发病机制,第一次,
肌球蛋白S1和细丝之间的分子变构机制的作用。新的计算-
实验平台将用于机械洞察(例如用于识别新的
肌丝疾病目标),并开发一种全面的深度学习预测算法,
将致病性归于肌球蛋白和细丝HCM突变。后者代表了第一次使用
预测HCM疾病等位基因致病性的高分辨率结构、动力学和功能,
这些复杂患者的临床管理面临挑战。的培训和测试部分,
深度学习开发将利用高度注释和策划的SHaRe HCM注册表中的数据
从而大大提高了平移能力。将追求两个具体目标:目标1将利用最先进的技术
我们的一个小组开发的稀有事件模拟方法和现有非结构化领域的改进
的CTF通过FRET建立新的模型。目标2将采用一个广泛的计算程序,
分析和随后的体外验证,使用致病性、未知重要性的变体和非致病性变体,
来源于SHaRe的致病性HCM等位基因为机器学习环境提供输入,
算法开发肌球蛋白和细丝HCM的新疾病机制,包括串扰
还将探讨这两个组成部分之间的关系。这些机制的阐明可以作为
强大的分子治疗方法
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEVEN D SCHWARTZ其他文献
STEVEN D SCHWARTZ的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEVEN D SCHWARTZ', 18)}}的其他基金
Protein dynamics from femtoseconds to milliseconds as crafted by natural and laboratory evolution: towards enzyme design
由自然和实验室进化精心设计的从飞秒到毫秒的蛋白质动力学:走向酶设计
- 批准号:
10701672 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Protein dynamics from femtoseconds to milliseconds as crafted by natural and laboratory evolution: towards enzyme design
由自然和实验室进化精心设计的从飞秒到毫秒的蛋白质动力学:走向酶设计
- 批准号:
10402060 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Rapid protein dynamics and catalysis: modulation by laboratory evolution, designed mutation, and protein control of electric field environment
快速蛋白质动力学和催化:实验室进化调节、设计突变和电场环境的蛋白质控制
- 批准号:
10303036 - 财政年份:2019
- 资助金额:
$ 53.71万 - 项目类别:
Rapid protein dynamics and catalysis: modulation by laboratory evolution, designed mutation, and protein control of electric field environment
快速蛋白质动力学和催化:实验室进化调节、设计突变和电场环境的蛋白质控制
- 批准号:
10058272 - 财政年份:2019
- 资助金额:
$ 53.71万 - 项目类别:
A molecular study linking cTnT dynamics to genetic cardiomyopathy
将 cTnT 动力学与遗传性心肌病联系起来的分子研究
- 批准号:
8386993 - 财政年份:2010
- 资助金额:
$ 53.71万 - 项目类别:
A molecular study linking cTnT dynamics to genetic cardiomyopathy
将 cTnT 动力学与遗传性心肌病联系起来的分子研究
- 批准号:
8204694 - 财政年份:2010
- 资助金额:
$ 53.71万 - 项目类别:
The interaction of myosin and the thin filament: how mutations cause allosteric dysfunction and their connection to genetic cardiomyopathy
肌球蛋白和细丝的相互作用:突变如何导致变构功能障碍及其与遗传性心肌病的联系
- 批准号:
10678915 - 财政年份:2010
- 资助金额:
$ 53.71万 - 项目类别:
A molecular study linking cTnT dynamics to genetic cardiomyopathy
将 cTnT 动力学与遗传性心肌病联系起来的分子研究
- 批准号:
8608461 - 财政年份:2010
- 资助金额:
$ 53.71万 - 项目类别:
相似海外基金
Linkage of HIV amino acid variants to protective host alleles at CHD1L and HLA class I loci in an African population
非洲人群中 HIV 氨基酸变异与 CHD1L 和 HLA I 类基因座的保护性宿主等位基因的关联
- 批准号:
502556 - 财政年份:2024
- 资助金额:
$ 53.71万 - 项目类别:
Olfactory Epithelium Responses to Human APOE Alleles
嗅觉上皮对人类 APOE 等位基因的反应
- 批准号:
10659303 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Deeply analyzing MHC class I-restricted peptide presentation mechanistics across alleles, pathways, and disease coupled with TCR discovery/characterization
深入分析跨等位基因、通路和疾病的 MHC I 类限制性肽呈递机制以及 TCR 发现/表征
- 批准号:
10674405 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
An off-the-shelf tumor cell vaccine with HLA-matching alleles for the personalized treatment of advanced solid tumors
具有 HLA 匹配等位基因的现成肿瘤细胞疫苗,用于晚期实体瘤的个性化治疗
- 批准号:
10758772 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
Identifying genetic variants that modify the effect size of ApoE alleles on late-onset Alzheimer's disease risk
识别改变 ApoE 等位基因对迟发性阿尔茨海默病风险影响大小的遗传变异
- 批准号:
10676499 - 财政年份:2023
- 资助金额:
$ 53.71万 - 项目类别:
New statistical approaches to mapping the functional impact of HLA alleles in multimodal complex disease datasets
绘制多模式复杂疾病数据集中 HLA 等位基因功能影响的新统计方法
- 批准号:
2748611 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Studentship
Genome and epigenome editing of induced pluripotent stem cells for investigating osteoarthritis risk alleles
诱导多能干细胞的基因组和表观基因组编辑用于研究骨关节炎风险等位基因
- 批准号:
10532032 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Recessive lethal alleles linked to seed abortion and their effect on fruit development in blueberries
与种子败育相关的隐性致死等位基因及其对蓝莓果实发育的影响
- 批准号:
22K05630 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Investigating the Effect of APOE Alleles on Neuro-Immunity of Human Brain Borders in Normal Aging and Alzheimer's Disease Using Single-Cell Multi-Omics and In Vitro Organoids
使用单细胞多组学和体外类器官研究 APOE 等位基因对正常衰老和阿尔茨海默病中人脑边界神经免疫的影响
- 批准号:
10525070 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别:
Leveraging the Evolutionary History to Improve Identification of Trait-Associated Alleles and Risk Stratification Models in Native Hawaiians
利用进化历史来改进夏威夷原住民性状相关等位基因的识别和风险分层模型
- 批准号:
10689017 - 财政年份:2022
- 资助金额:
$ 53.71万 - 项目类别: