Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
基本信息
- 批准号:10242075
- 负责人:
- 金额:$ 37.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2019
- 资助国家:美国
- 起止时间:2019-09-23 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:AddressAdoptionBiologicalBiomedical ResearchBlood CirculationCase StudyChemical StructureChemicalsComplexComputational TechniqueComputing MethodologiesConsumptionDataData SetDatabasesDevelopmentDiseaseEngineeringEnsureFeedbackGoalsHealthHumanInternetIntestinesLabelLettersLiteratureMachine LearningMapsMass Spectrum AnalysisMeSH ThesaurusMeasurementMeasuresMetabolicMetabolismMethodsModelingMolecularMolecular StructureNutritionalOrganPathway interactionsPerformancePlayProbabilityPropertyPubChemPubMedPublic DomainsResearchResearch PersonnelRoleRunningSamplingStatistical ModelsStructureSurveysTechniquesTestingTimeTissuesTrainingUncertaintyValidationWorkannotation systembasebiomarker discoverychemical standardcombinatorialcomputerized toolscostdark matterdeep learningdesigndrug developmentdrug discoveryexperimental studygastrointestinal systemgut microbiotainterestlarge datasetsmetabolomemetabolomicsmicrobiotamicrobiota metabolitesneural networknovelnutritionopen sourcephysical propertysmall moleculetool
项目摘要
PROJECT SUMMARY/ABSTRACT
Detecting and quantifying products of cellular metabolism using mass spectrometry (MS) has already shown
great promise in biomarker discovery, nutritional analysis and other biomedical research fields. Despite recent
advances in analysis techniques, our ability to interpret MS measurements remains limited. The biggest
challenge in metabolomics is annotation, where measured compounds are assigned chemical identities. The
annotation rates of current computational tools are low. For several surveyed metabolomics studies, less than
20% of all compounds are annotated. Another contributing factor to low annotation rates is the lack of systematic
ways of designing a candidate set, a listing of putative chemical identities that can be used during annotation.
Relying on exiting databases is problematic as considering the large combinatorial space of molecular
arrangements, there are many biologically relevant compounds not catalogued in databases or documented in
the literature. A secondary yet important challenge is interpreting the measurements to understand the metabolic
activity of the sample under study. Current techniques are limited in utilizing complex information about the
sample to elucidate metabolic activity.
The goal of this project is to develop computational techniques to advance the interpretation of large-scale
metabolomics measurements. To address current challenges, we propose to pursue three Aims: (1) Engineering
candidate sets that enhance biological discovery. (2) Developing new techniques for annotation including using
deep learning and incremental build out methods to recommend novel chemical structures that best explain the
measurements. (3) Constructing probabilistic models to analyze metabolic activity. Each technique will be
rigorously validated computationally and experimentally using chemical standards. Two detailed case studies on
the intestinal microbiota will allow us to further validate our tools. Microbiota-derived metabolites have been
detected in circulation and shown to engage host cellular pathways in organs and tissues beyond the digestive
system. Identifying these metabolites is thus critical for understanding the metabolic function of the microbiota
and elucidating their mechanisms. The complex test cases will challenge our techniques, provide feedback
during development, and allow us to further disseminate our techniques. We will work closely with early adopters
of our tools, as proposed in supporting letters, to further validate our tools and encourage wide adoption. All
proposed tools will be open source and made accessible through the web. Our tools promise to change current
practices in interpreting metabolomics data beyond what is currently possible with databases, current annotation
tools, statistical and overrepresentation analysis, or combinations thereof. The use of machine learning and large
data sets as proposed herein defines the most promising research direction in metabolomics analysis.
项目总结/摘要
使用质谱法(MS)检测和定量细胞代谢产物已经表明,
在生物标记物发现、营养分析和其他生物医学研究领域具有巨大的前景。尽管最近
尽管分析技术的进步,我们解释MS测量结果的能力仍然有限。最大的
代谢组学的挑战是注释,其中测量的化合物被分配化学身份。的
当前计算工具的注释率低。对于几项调查的代谢组学研究,
所有化合物的20%被注释。另一个导致低注释率的因素是缺乏系统的
设计候选集的方法,可以在注释期间使用的推定化学身份的列表。
由于考虑到分子的大组合空间,依赖现有的数据库是有问题的。
在这些安排中,有许多生物学相关的化合物没有在数据库中编目或记录在
文学作品一个次要但重要的挑战是解释测量结果以了解代谢
研究样品的活性。目前的技术在利用关于细胞的复杂信息方面是有限的。
样品以阐明代谢活性。
这个项目的目标是发展计算技术,以促进大规模的解释,
代谢组学测量。为了应对当前的挑战,我们建议追求三个目标:(1)工程
增强生物学发现的候选集。(2)开发新的注释技术,包括使用
深度学习和渐进式构建方法,以推荐最能解释
测量. (3)构建概率模型以分析代谢活动。每项技术都将
通过计算和实验使用化学标准进行严格验证。两个详细的案例研究,
肠道微生物群将使我们能够进一步验证我们的工具。微生物群衍生的代谢物已经被
在循环中检测到,并显示参与消化系统以外器官和组织中的宿主细胞途径
系统因此,识别这些代谢物对于理解微生物群的代谢功能至关重要
并阐明其机制。复杂的测试案例将挑战我们的技术,提供反馈,
在开发过程中,并允许我们进一步传播我们的技术。我们将与早期采用者密切合作
我们的工具,如支持信中所建议的,以进一步验证我们的工具并鼓励广泛采用。所有
拟议的工具将是开放源码的,可通过网络获取。我们的工具承诺改变当前
解释代谢组学数据的实践超出了目前数据库的可能性,当前注释
工具、统计和代表性过高分析或其组合。使用机器学习和大型
本文提出的数据集定义了代谢组学分析中最有前途的研究方向。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Soha Hassoun其他文献
Soha Hassoun的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Soha Hassoun', 18)}}的其他基金
Using Common Fund Datasets to Illuminate Drug-Microbial Interactions
使用共同基金数据集阐明药物-微生物相互作用
- 批准号:
10777339 - 财政年份:2023
- 资助金额:
$ 37.21万 - 项目类别:
Deep Learning Models for Metabolomics Analysis
用于代谢组学分析的深度学习模型
- 批准号:
10552395 - 财政年份:2023
- 资助金额:
$ 37.21万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10022125 - 财政年份:2019
- 资助金额:
$ 37.21万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10394012 - 财政年份:2019
- 资助金额:
$ 37.21万 - 项目类别:
Computational Techniques for Advancing Untargeted Metabolomics Analysis
推进非靶向代谢组学分析的计算技术
- 批准号:
10480818 - 财政年份:2019
- 资助金额:
$ 37.21万 - 项目类别:
相似海外基金
WELL-CALF: optimising accuracy for commercial adoption
WELL-CALF:优化商业采用的准确性
- 批准号:
10093543 - 财政年份:2024
- 资助金额:
$ 37.21万 - 项目类别:
Collaborative R&D
Investigating the Adoption, Actual Usage, and Outcomes of Enterprise Collaboration Systems in Remote Work Settings.
调查远程工作环境中企业协作系统的采用、实际使用和结果。
- 批准号:
24K16436 - 财政年份:2024
- 资助金额:
$ 37.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Unraveling the Dynamics of International Accounting: Exploring the Impact of IFRS Adoption on Firms' Financial Reporting and Business Strategies
揭示国际会计的动态:探索采用 IFRS 对公司财务报告和业务战略的影响
- 批准号:
24K16488 - 财政年份:2024
- 资助金额:
$ 37.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
ERAMET - Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
ERAMET - 快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10107647 - 财政年份:2024
- 资助金额:
$ 37.21万 - 项目类别:
EU-Funded
Assessing the Coordination of Electric Vehicle Adoption on Urban Energy Transition: A Geospatial Machine Learning Framework
评估电动汽车采用对城市能源转型的协调:地理空间机器学习框架
- 批准号:
24K20973 - 财政年份:2024
- 资助金额:
$ 37.21万 - 项目类别:
Grant-in-Aid for Early-Career Scientists
Ecosystem for rapid adoption of modelling and simulation METhods to address regulatory needs in the development of orphan and paediatric medicines
快速采用建模和模拟方法的生态系统,以满足孤儿药和儿科药物开发中的监管需求
- 批准号:
10106221 - 财政年份:2024
- 资助金额:
$ 37.21万 - 项目类别:
EU-Funded
Our focus for this project is accelerating the development and adoption of resource efficient solutions like fashion rental through technological advancement, addressing longer in use and reuse
我们该项目的重点是通过技术进步加快时装租赁等资源高效解决方案的开发和采用,解决更长的使用和重复使用问题
- 批准号:
10075502 - 财政年份:2023
- 资助金额:
$ 37.21万 - 项目类别:
Grant for R&D
Engage2innovate – Enhancing security solution design, adoption and impact through effective engagement and social innovation (E2i)
Engage2innovate — 通过有效参与和社会创新增强安全解决方案的设计、采用和影响 (E2i)
- 批准号:
10089082 - 财政年份:2023
- 资助金额:
$ 37.21万 - 项目类别:
EU-Funded
De-Adoption Beta-Blockers in patients with stable ischemic heart disease without REduced LV ejection fraction, ongoing Ischemia, or Arrhythmias: a randomized Trial with blinded Endpoints (ABbreviate)
在没有左心室射血分数降低、持续性缺血或心律失常的稳定型缺血性心脏病患者中停用β受体阻滞剂:一项盲法终点随机试验(ABbreviate)
- 批准号:
481560 - 财政年份:2023
- 资助金额:
$ 37.21万 - 项目类别:
Operating Grants
Collaborative Research: SCIPE: CyberInfrastructure Professionals InnoVating and brOadening the adoption of advanced Technologies (CI PIVOT)
合作研究:SCIPE:网络基础设施专业人员创新和扩大先进技术的采用 (CI PIVOT)
- 批准号:
2321091 - 财政年份:2023
- 资助金额:
$ 37.21万 - 项目类别:
Standard Grant