Resonator Approach to Pulsed Dynamic Nuclear Polarization of Membrane Proteins

膜蛋白脉冲动态核极化的谐振器方法

基本信息

项目摘要

Nuclear Magnetic Resonance (NMR) is an exceptionally versatile and informative spectroscopic technique for atomic-level structure-function studies of biological macromolecules in their native-like environments. In particular, solid-state NMR allows one to study membrane proteins in lipid bilayers under the conditions approaching those encountered in the biological cells. Membrane proteins are of particular interest for biomedicine being implicated in numerous biological processes and diseases and constituting nearly 50% of the modern drug targets. However, low polarization of the nuclear spins limits NMR sensitivity and represents the major roadblock for expanding its use in structural biology. Dynamic nuclear polarization (DNP) can potentially boost sensitivity of NMR by up to several hundred times via irradiating the sample with mm-waves at matching frequencies. Despite significant progress, DNP NMR of biological samples above the freezing temperatures remains to be a challenge mainly because of short relaxation times of the nuclear and electron spins at higher temperatures and excessive sample heating by mm-waves. We propose to overcome these fundamental problems by constructing a novel 200 GHz/300 MHz DNP spectrometer which will be based on resonant mm-wave structures and will operate in a pulse mode for DNP transfer vs. the continuous mode currently in use. The key innovation is our recently invented mm-wave photonic band-gap resonators which increase the sample volume by approximately 1-2 orders of magnitude as compared to the existing resonator cavity designs. We propose to increase the quality factors of such resonators from Q=200 as demonstrated for the prototype to at least Q=1,000 in order to boost mm-wave field at the sample. Achieving these higher mm- wave fields will be essential for enabling advanced pulse schemes for DNP that will provide maximum NMR signal enhancements while minimizing sample heating. The spectrometer development will be guided by computer simulations of mm-wave fields and pulse DNP sequences, and will be based on the existing low- power prototype operating in a continuous DNP mode yielding record-breaking preliminary data obtained at room temperature. The spectrometer will operate over a broad temperature range (100-330 K), and multi- resonance probeheads will be optimized for hydrated biological samples above the freezing point. The new DNP technology will be applied to a series of biological samples including hydrated membrane proteins aligned by nanoporous substrates. Success of the project will be built upon the extensive expertise of the two collaborating PIs (Nevzorov and Smirnov) in designing and constructing a room temperature DNP NMR spectrometer prototype based on solid-state mm-wave components. The new pulsed DNP spectrometer will open up unexplored perspectives with regard to developing novel pulse methodologies for DNP-enhanced solid-state NMR of membrane proteins. This is a high-gain high-risk project where the risk is leveraged by the extensive experience of the investigators and the highly encouraging preliminary results. 1
核磁共振(NMR)是一种非常通用和信息丰富的光谱技术,用于 生物大分子在类天然环境中的原子水平结构-功能研究。在 特别是,固态NMR允许人们研究脂质双层中的膜蛋白, 接近生物细胞中遇到的那些。膜蛋白是特别感兴趣的, 生物医学与许多生物过程和疾病有关,占全球生物医学的近50%。 现代药物靶点然而,核自旋的低极化限制了NMR灵敏度,并且代表了 这是在结构生物学中扩大其应用的主要障碍。动态核极化(DNP)可以 通过用毫米波照射样品,可能将NMR的灵敏度提高数百倍 频率匹配。尽管取得了重大进展,但生物样品在冰点以上的DNP NMR 温度仍然是一个挑战,主要是因为核和电子的弛豫时间短, 在更高的温度下旋转和由毫米波引起的过度样品加热。我们建议克服这些困难, 基本问题,通过构建一种新型的200 GHz/300 MHz DNP光谱仪,将基于 谐振毫米波结构,并将在脉冲模式下工作,用于DNP传输与连续模式 目前正在使用。关键的创新是我们最近发明的毫米波光子带隙谐振器, 与现有的谐振器相比,将样品体积增加大约1-2个数量级 型腔设计我们建议从Q=200增加这种谐振器的品质因数,如对于 将原型至少提高到Q=1,000,以增强样品处的毫米波场。实现这些更高的mm- 波场将是必不可少的,使先进的脉冲方案的DNP,将提供最大的NMR 信号增强,同时最大限度地减少样品加热。光谱仪的开发将遵循以下原则: 毫米波场和脉冲DNP序列的计算机模拟,并将基于现有的低, 动力原型在连续DNP模式下运行,获得了破纪录的初步数据, 室温光谱仪将在宽温度范围(100-330 K)和多个温度范围内工作。 共振探头将针对高于凝固点的水合生物样品进行优化。新 DNP技术将应用于一系列生物样品,包括水化膜蛋白对齐 通过纳米多孔基质。该项目的成功将建立在两人广泛的专业知识之上 合作PI(Nevzorov和Smirnov)设计和构建室温DNP NMR 基于固态毫米波元件的光谱仪原型。新的脉冲DNP光谱仪将 开辟了未开发的前景,关于发展新的脉冲方法,为DNP增强 膜蛋白的固态NMR。这是一个高收益高风险的项目,风险是由 调查人员的丰富经验和非常令人鼓舞的初步结果。 1

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alexander A. Nevzorov其他文献

Protein Rotational Dynamics in Aligned Lipid Membranes Probed by Anisotropic <em>T</em><sub>1<em>ρ</em></sub> NMR Relaxation
  • DOI:
    10.1016/j.bpj.2017.11.3740
  • 发表时间:
    2018-01-23
  • 期刊:
  • 影响因子:
  • 作者:
    Emmanuel O. Awosanya;Alexander A. Nevzorov
  • 通讯作者:
    Alexander A. Nevzorov
Correction to: Validation of protein backbone structures calculated from NMR angular restraints using Rosetta
  • DOI:
    10.1007/s10858-022-00398-w
  • 发表时间:
    2022-08-27
  • 期刊:
  • 影响因子:
    1.900
  • 作者:
    Joel Lapin;Alexander A. Nevzorov
  • 通讯作者:
    Alexander A. Nevzorov

Alexander A. Nevzorov的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alexander A. Nevzorov', 18)}}的其他基金

Resonator Approach to Pulsed Dynamic Nuclear Polarization of Membrane Proteins
膜蛋白脉冲动态核极化的谐振器方法
  • 批准号:
    10004143
  • 财政年份:
    2018
  • 资助金额:
    $ 25.85万
  • 项目类别:
SRLS APPROACH FOR STUDIES ON ORIENTED MEMBRANE PROTEINS BY SOLID-STATE NMR
通过固态核磁共振研究定向膜蛋白的 SRLS 方法
  • 批准号:
    8364106
  • 财政年份:
    2011
  • 资助金额:
    $ 25.85万
  • 项目类别:

相似海外基金

SBIR Phase II: Thermally-optimized power amplifiers for next-generation telecommunication and radar
SBIR 第二阶段:用于下一代电信和雷达的热优化功率放大器
  • 批准号:
    2335504
  • 财政年份:
    2024
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Cooperative Agreement
Interferometric and Multiband optical Parametric Amplifiers for Communications (IMPAC)
用于通信的干涉式和多频带光学参量放大器 (IMPAC)
  • 批准号:
    EP/X031918/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Fellowship
Josephson Parametric Amplifiers using CVD graphene junctions
使用 CVD 石墨烯结的约瑟夫森参量放大器
  • 批准号:
    EP/Y003152/1
  • 财政年份:
    2024
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Research Grant
Semiconductor-based Terahertz Traveling Wave Amplifiers for Monolithic Integration
用于单片集成的半导体太赫兹行波放大器
  • 批准号:
    2329940
  • 财政年份:
    2023
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Standard Grant
OPTIME-PA: Optimal MMIC Design of E-Band Power Amplifiers for Satcom using Dedicated Measurements and Non-Linear Modelling
OPTIME-PA:使用专用测量和非线性建模的卫星通信 E 频段功率放大器的最佳 MMIC 设计
  • 批准号:
    10075892
  • 财政年份:
    2023
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Collaborative R&D
Optical Glass Amplifiers for High Capacity Networks
用于高容量网络的光学玻璃放大器
  • 批准号:
    538379-2018
  • 财政年份:
    2022
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Collaborative Research and Development Grants
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10681326
  • 财政年份:
    2022
  • 资助金额:
    $ 25.85万
  • 项目类别:
Investigating the function of ZU5 domain-containing proteins as amplifiers of caspase activation
研究含有 ZU5 结构域的蛋白质作为 caspase 激活放大器的功能
  • 批准号:
    10621402
  • 财政年份:
    2022
  • 资助金额:
    $ 25.85万
  • 项目类别:
Broadband Digital Doherty Amplifiers for Sub-6 GHz 5G wireless Applications
适用于 6 GHz 以下 5G 无线应用的宽带数字 Doherty 放大器
  • 批准号:
    573452-2022
  • 财政年份:
    2022
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Alliance Grants
TALENT – Tapered AmpLifiErs for quaNtum Technologies
人才 — 量子技术的锥形放大器
  • 批准号:
    10032436
  • 财政年份:
    2022
  • 资助金额:
    $ 25.85万
  • 项目类别:
    Collaborative R&D
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了