Nuclear receptor mediated bile acid alterations and coagulopathy in protein-energy undernutrition
蛋白质能量营养不良中核受体介导的胆汁酸改变和凝血病
基本信息
- 批准号:10241927
- 负责人:
- 金额:$ 16.26万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2017
- 资助国家:美国
- 起止时间:2017-09-01 至 2022-08-31
- 项目状态:已结题
- 来源:
- 关键词:5 year old7alpha hydroxylaseAddressAdvisory CommitteesAffectAgonistAnemiaAnimal ModelAtmosphereAutophagocytosisBile Acid Biosynthesis PathwayBile AcidsBindingBioinformaticsBiologyBlood Coagulation DisordersBlood Coagulation FactorBody Weight decreasedCYP7A1 geneCessation of lifeChIP-seqChildChildhoodCholesterolClinicalCoagulation ProcessContusionsDNADNA BindingDetectionDevelopmentDevelopment PlansDietDietary FatsDigestionDigestive System DisordersDoctor of MedicineDoctor of PhilosophyElementsEnvironmentEnzymesEtiologyExhibitsFastingFat-Soluble VitaminFatty acid glycerol estersFecesFibrinogenFosteringFoundationsFundingGastroenterologistGastroenterologyGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGluconeogenesisGoalsGrowthHealthHemorrhageHepatologyHigh-Throughput Nucleotide SequencingHomeostasisHospital CostsImpairmentInstitutionInternationalIntestinesKnowledgeLaboratoriesLeadLifeLinkLipolysisLiverMalabsorption SyndromesMalnutritionMeasurementMeasuresMediatingMedicalMedical Care CostsMedical centerMedicineMentorshipMetabolic PathwayMetabolismMetagenomicsMicellesMixed Function OxygenasesModelingMolecularMotionMusMutationNuclear Hormone ReceptorsNuclear ReceptorsNutrientNutritional StudyNutritional statusOutcomePPAR alphaPathologicPathway interactionsPediatric HospitalsPediatricsPharmacologyPhysiciansPhysiologicalPhysiological ProcessesPlasmaProcessPromoter RegionsProteinsProthrombin time assayPublicationsQuality of lifeReceptor SignalingRegulationRepressionResearchResearch PersonnelRoleRouteSchoolsScienceScientistSignal TransductionSiteSmall IntestinesSterolsTestingTexasTherapeuticTimeTimeLineTissuesTrainingTranslational ResearchUnited StatesUnited States National Institutes of HealthVitamin DeficiencyVitamin KWeight GainWestern BlottingWild Type MouseWorkabsorptionactivation productbasecareercareer developmentcollegecomorbiditydesigndetection of nutrientfatty acid oxidationgene repressiongenome-wideglobal healthgut bacteriahealthy weightimprovedliver functionloss of function mutationmortalitymouse modelnovelnovel therapeuticsnutrient deprivationnutritionoxysterol 7-alpha-hydroxylasepreventpromoterreceptorresponsesocioeconomicssymposiumtargeted treatmenttranscriptome sequencingyoung adult
项目摘要
PROJECT SUMMARY/ABSTRACT
Protein-energy undernutrition (PEU) is implicated in half of all global deaths under five years of age and
remains one of the most pressing challenges in pediatrics today. PEU sets into motion a vicious cycle of liver
function abnormalities that further erode health. For example, intestinal bile acids are markedly reduced in
children with PEU, resulting in poor dietary fat absorption and impaired weight gain. In severe cases, vitamin K-
independent coagulopathy can lead to catastrophic bleeding. Mechanisms by which PEU alters these two
processes are unknown, although evidence implicates the nutrient-sensing nuclear receptors, farnesoid X
receptor (FXR) and peroxisome proliferator-activated receptor (PPAR)α. FXR is activated in the fed state by bile
acids, while PPARα is activated in the fasted state by products of lipolysis. These receptors regulate bile acid
homeostasis and other liver functions, competing for binding to many of the same promoter regions with opposite
transcriptional effects. Children with mutations in the gene encoding FXR also have vitamin K-independent
coagulopathy with transcriptional repression of multiple coagulation factors including fibrinogen, implicating FXR
signaling in the coagulopathy of PEU. To investigate the role of nuclear receptors in these two liver functions,
we examined mouse models of early-life PEU, each of which exhibits globally decreased bile acids and
coagulopathy. Gene expression patterns in our young adult mice demonstrate Pparα activation, Fxr signal loss,
and transcriptional repression of genes that promote bile acid synthesis and coagulation. Based on these
findings, our hypothesis is that Pparα activation by products of lipolysis generated in PEU
transcriptionally represses key genes in bile acid synthesis leading to decreased intestinal bile acids
and impaired weight gain. Furthermore, we hypothesize that activated Pparα displaces Fxr from shared
DNA promoter regions, mediating coagulopathy by decreasing transcription of Fxr-dependent genes.
This hypothesis will be tested with two specific aims. In Aim 1, PEU and healthy wild type mice treated with
Pparα agonist or antagonist, along with PEU and healthy Pparα-/- mice, will be used to determine how Pparα
drives changes in the expression of genes that regulate bile acid pool size by qPCR, bile acid concentrations by
LC-MS/MS, and growth impairment over time. In Aim 2, wild type mice treated with Pparα and Fxr agonists and
antagonists will be used to determine whether competitive DNA binding between the two nuclear receptors
results in coagulopathy through transcriptional repression of Fxr-dependent coagulation factors; these studies
will employ ChIP-seq, RNA-seq, and plasma coagulation measurements. Our expected outcomes are
characterization of a novel molecular link, mediated by nuclear hormone receptors, between the regulation of
bile acid homeostasis and coagulation, both of which are pathologically altered in PEU. These studies will provide
the foundation for developing new pharmacologic and diet-based therapeutic strategies that could ultimately be
generalizable to children with weight loss due to a variety of medical and socioeconomic causes.
Geoffrey A. Preidis, M.D., Ph.D. is currently a fellow in Pediatric Gastroenterology, Hepatology, and Nutrition
at Baylor College of Medicine. He has a strong publication record in metagenomics, global health, and nutrition
research with children and animal models of PEU. His long-term goal is to become an independent NIH-funded
physician-scientist investigating co-morbidities that result from nutrient deprivation early in life. These research
aims support the PI’s career development by building upon his background in pediatric gastroenterology and
graduate work in metagenomics, with new training in nuclear receptor biology and advanced applications of high-
throughput sequencing and bioinformatic analysis. Additional key elements of the training plan include: 1) A
mentorship and advisory team of internationally recognized, independently funded investigators with expertise
in all aspects of the development plan, including David Moore, Ph.D. (nuclear receptor biology), Aleksandar
Milosavljevic, Ph.D. (genome-wide bioinformatics), and Robert Shulman, M.D. (clinical translational research
and pediatric gastroenterologist academic career development); 2) Advanced coursework in nuclear receptor
biology and bioinformatics from the Baylor College of Medicine Graduate School of Biomedical Sciences, Cold
Spring Harbor Laboratory, FASEB Science Research Conferences, and Keystone Symposia; and 3) Scholarly
activities designed to foster independence. The PI’s training environment is a premiere academic research
institution closely allied with the world’s largest medical center, the nation’s largest children’s hospital, and the
NIH-funded Texas Medical Center Digestive Disease Center. This environment will provide a collaborative,
supportive, and productive atmosphere to facilitate completion of all research aims and development goals in
the proposed timeline. In summary, this training plan will place the PI on a direct route to a successful career
as an independent investigator while identifying novel pathways by which liver function impairments in PEU
develop and may ultimately be prevented and treated.
项目摘要/摘要
蛋白质能源营养不良(PEU)隐含在五岁以下的全球死亡中的一半,并且
仍然是当今儿科最紧迫的挑战之一。 PEU开始运动肝脏的恶性循环
功能异常,进一步侵蚀健康。例如,肠胆汁酸明显降低
PEU的儿童,导致饮食中的脂肪痛苦不佳和体重增加受损。在严重的情况下,维生素K-
独立的凝血病会导致灾难性的出血。 PEU改变这两个机制
过程未知,尽管证据暗示了营养感应的核接收器,但Farnesoid X
受体(FXR)和过氧化物组增殖物激活受体(PPAR)α。 FXR被胆汁在美联储状态激活
酸,而PPARα通过脂解的产物在禁食状态下激活。这些受体调节胆汁酸
稳态和其他肝功能,竞争与许多相同的相同启动子区域结合
转录效应。编码FXR的基因中突变的儿童也具有维生素K非依赖性
凝血病与多种凝血因子的转录表示,包括纤维蛋白原,暗示,暗示了FXR
PEU凝血病中的信号传导。为了研究核接收器在这两个肝功能中的作用,
我们检查了早期PEU的小鼠模型,每种PEU的模型都表现出全球改进的胆汁酸和
凝血病。我们年轻小鼠中的基因表达模式表明PPARα激活,FXR信号丧失,
以及促进胆汁酸合成和凝结的基因的转录表示。基于这些
调查结果是,我们的假设是PEU中产生的脂解产物的PPARα激活
转录反映胆汁酸合成中的关键基因,导致肠道胆酸降低
体重增加受损。此外,我们假设激活的PPARα从共享中取代FXR
DNA启动子区域,通过减少FXR依赖性基因的转录来介导凝血病。
该假设将以两个具体的目的进行检验。在AIM 1中,PEU和健康的野生型小鼠接受治疗
PPARα激动剂或拮抗剂以及PEU和健康的PPARα-/ - 小鼠将用于确定PPARα如何
通过qPCR,胆汁酸浓度来驱动基因表达的变化
LC-MS/MS和随着时间的推移增长障碍。在AIM 2中,用PPARα和FXR激动剂处理的野生型小鼠以及
拮抗剂将用于确定两个核接收器之间的竞争性DNA结合是否
通过FXR依赖性凝血因子的转录表示导致凝血病变。这些研究
将采用CHIP-SEQ,RNA-SEQ和血浆凝血测量。我们的预期结果是
由核马介导的新分子链接的表征,在调节之间
胆汁酸稳态和凝结,两者在PEU中都在病理上改变。这些研究将提供
开发新的药理学和基于饮食的治疗策略的基础,最终可能是
由于各种医学和社会经济原因,可承受体重减轻的儿童。
Geoffrey A. Preidis,医学博士,博士目前是儿科胃肠病学,肝病学和营养的研究员
在贝勒医学院。他在宏基因组学,全球健康和营养方面有很强的出版记录
使用PEU的儿童和动物模型进行研究。他的长期目标是成为一名独立的NIH资助
生理科学家研究了生命早期营养剥夺引起的合并症。这些研究
AIMS通过在儿科胃肠病学和
宏基因组学的研究生工作,对核受体生物学的新培训以及高级应用
吞吐量测序和生物信息学分析。培训计划的其他关键要素包括:1)
具有专业知识的国际认可,独立资助的调查员的遗产和咨询团队
在开发计划的各个方面,包括David Moore博士。 (核受体生物学),亚历山大
Milosavljevic博士(全基因组生物信息学)和医学博士Robert Shulman(临床翻译研究)
和儿科胃肠病学家的学术职业发展); 2)核接收器的高级课程
贝勒医学学院生物医学科学研究生院的生物学和生物信息学
Spring Harbor实验室,FaseB科学研究会议和Keystone研讨会; 3)学术
旨在促进独立的活动。 PI的培训环境是一项首要的学术研究
机构与世界上最大的医疗中心,美国最大的儿童医院和
NIH资助的得克萨斯州医疗中心消化疾病中心。这个环境将提供协作,
支持和产品氛围,以支持完成所有研究目标和发展目标
提议的时间表。总而言之,该培训计划将使PI进入成功职业的直接途径
作为独立研究者,同时识别PEU中肝功能障碍的新途径
开发并最终可以预防和治疗。
项目成果
期刊论文数量(5)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
Evidence from systematic reviews of randomized trials on enteral lactoferrin supplementation in preterm neonates.
来自早产儿肠内补充乳铁蛋白随机试验的系统评价的证据。
- DOI:10.1139/bcb-2020-0136
- 发表时间:2021
- 期刊:
- 影响因子:0
- 作者:Pammi,Mohan;Preidis,GeoffreyA;Tarnow-Mordi,WilliamO
- 通讯作者:Tarnow-Mordi,WilliamO
Rational Probiotic Strain Selection to Prevent Necrotizing Enterocolitis.
- DOI:10.1097/mpg.0000000000003571
- 发表时间:2022-10-01
- 期刊:
- 影响因子:2.9
- 作者:Preidis, Geoffrey A.
- 通讯作者:Preidis, Geoffrey A.
New Insights into the Pathogenesis and Treatment of Malnutrition.
- DOI:10.1016/j.gtc.2018.07.007
- 发表时间:2018-12
- 期刊:
- 影响因子:3.7
- 作者:Thaxton GE;Melby PC;Manary MJ;Preidis GA
- 通讯作者:Preidis GA
Reply.
回复。
- DOI:10.1002/art.40923
- 发表时间:2019
- 期刊:
- 影响因子:0
- 作者:Kim,AlfredHJ;Strand,Vibeke;Atkinson,JohnP
- 通讯作者:Atkinson,JohnP
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Geoffrey A Preidis其他文献
Geoffrey A Preidis的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Geoffrey A Preidis', 18)}}的其他基金
The metabolic basis for impaired bile acid synthesis in malnutrition
营养不良胆汁酸合成受损的代谢基础
- 批准号:
10501037 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
The metabolic basis for impaired bile acid synthesis in malnutrition
营养不良胆汁酸合成受损的代谢基础
- 批准号:
10666701 - 财政年份:2022
- 资助金额:
$ 16.26万 - 项目类别:
Impaired bile acid synthesis due to CYP7A1 and CYP7B1 suppression in malnutrition
营养不良时 CYP7A1 和 CYP7B1 抑制导致胆汁酸合成受损
- 批准号:
10445334 - 财政年份:2021
- 资助金额:
$ 16.26万 - 项目类别:
Impaired bile acid synthesis due to CYP7A1 and CYP7B1 suppression in malnutrition
营养不良时 CYP7A1 和 CYP7B1 抑制导致胆汁酸合成受损
- 批准号:
10285965 - 财政年份:2021
- 资助金额:
$ 16.26万 - 项目类别:
Nuclear receptor mediated bile acid alterations and coagulopathy in protein-energy undernutrition
蛋白质能量营养不良中核受体介导的胆汁酸改变和凝血病
- 批准号:
9765307 - 财政年份:2017
- 资助金额:
$ 16.26万 - 项目类别:
Mechanisms of Immunomodulation by Probiotic L. reuteri in Acute Gastroenteritis
益生菌罗伊氏乳杆菌对急性胃肠炎的免疫调节机制
- 批准号:
7745823 - 财政年份:2009
- 资助金额:
$ 16.26万 - 项目类别:
Mechanisms of Immunomodulation by Probiotic L. reuteri in Acute Gastroenteritis
益生菌罗伊氏乳杆菌对急性胃肠炎的免疫调节机制
- 批准号:
8078111 - 财政年份:2009
- 资助金额:
$ 16.26万 - 项目类别:
相似海外基金
Investigating the cellular and molecular mechanisms of lower-chlorinated polychlorinated biphenyl developmental neurotoxicity
研究低氯多氯联苯发育神经毒性的细胞和分子机制
- 批准号:
10678135 - 财政年份:2023
- 资助金额:
$ 16.26万 - 项目类别:
Role of microbial-modulated bile acid receptor signaling in breast cancer
微生物调节胆汁酸受体信号传导在乳腺癌中的作用
- 批准号:
10404525 - 财政年份:2020
- 资助金额:
$ 16.26万 - 项目类别:
Role of microbial-modulated bile acid receptor signaling in breast cancer
微生物调节胆汁酸受体信号传导在乳腺癌中的作用
- 批准号:
10053592 - 财政年份:2020
- 资助金额:
$ 16.26万 - 项目类别:
Role of microbial-modulated bile acid receptor signaling in breast cancer
微生物调节胆汁酸受体信号传导在乳腺癌中的作用
- 批准号:
10219210 - 财政年份:2020
- 资助金额:
$ 16.26万 - 项目类别: