Multiscale systems biology modeling to exploit tumor-stromal metabolic crosstalk in colorectal cancer
多尺度系统生物学模型利用结直肠癌中的肿瘤间质代谢串扰
基本信息
- 批准号:10251884
- 负责人:
- 金额:$ 64.56万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2018
- 资助国家:美国
- 起止时间:2018-09-13 至 2023-08-31
- 项目状态:已结题
- 来源:
- 关键词:3-DimensionalAddressApoptosisAutomobile DrivingBehaviorBindingBiochemicalBiological AssayCancer Cell GrowthCancer ModelCell Culture TechniquesCell ProliferationCellsCellular Metabolic ProcessCessation of lifeCoculture TechniquesColon CarcinomaColorectal CancerComplementComputer ModelsDataDependenceDiagnosisDiseaseDrug resistanceEcosystemEnvironmentFeedbackFibroblastsGlucoseGlutamineGrowthImageImaging TechniquesImmunotherapyIndividualKRAS2 geneLeadMalignant NeoplasmsMass Spectrum AnalysisMathematicsMeasuresMediatingMetabolicMetabolic PathwayMetabolismModelingMolecularMonitorMorbidity - disease rateNutrientOrganoidsOutcomePIK3CA genePathway interactionsPatientsPharmaceutical PreparationsPhysiologicalPlayPopulationPre-Clinical ModelPrincipal InvestigatorProductionReactionRelapseResearchResistanceRoleSignal TransductionSourceStromal CellsStromal NeoplasmSurvival RateSystems BiologyTestingTherapeuticTherapeutic EffectTissuesTumor-DerivedUnited StatesValidationWorkacquired drug resistancebasecancer cellcancer therapycell behaviorcell growthcell motilityclinically relevantcohortcolon cancer patientscolon cancer treatmentcomputer frameworkcomputer studiesexperimental studyinnovationinsightmetabolomicsmetastatic colorectalmolecular modelingmortalitymulti-scale modelingmutantneoplastic cellnovelnovel strategiesnovel therapeutic interventionpredictive modelingquantitative imagingsimulationspatiotemporalstandard of caretargeted treatmenttherapy resistanttreatment responsetreatment strategytumortumor growthtumor metabolismtumor microenvironment
项目摘要
Project Summary: Colorectal cancer (CRC) remains one of the deadliest cancers in the United States, with a
5-year survival rate of 10% for patients with metastatic disease. Over 120,000 people are diagnosed with CRC
each year, leading to approximately 50,000 deaths. Even with the current standard of care, CRC patients have
a high rate of relapse, and resistance to therapy is a key contributor to their high morbidity and mortality.
Interactions between tumor and stromal cells are a source of acquired drug resistance. Cancer-associated
fibroblasts (CAFs) are a dominant cellular component of the tumor stroma and play a significant role in drug
resistance by contributing to the altered metabolism that is a hallmark of CRC. Recent studies suggest
reciprocal metabolic reprogramming among CRC cells and CAFs. However, questions still remain regarding
the metabolic dependencies of these two cell populations in the context of treatment response. Thus,
quantifying the collective cell dynamics (i.e. cooperation or competition) of tumor and CAF cells in their
metabolic ecosystem may provide insight needed to develop optimal cancer therapies.
Despite many computational models of colorectal cancer growth and progression, there is currently no
quantitative spatiotemporal description of the interactions between colon cancer cells and stromal cells, or the
metabolic dependencies of these two cell populations. The proposed research addresses this limitation by
developing an experiment-based, multiscale computational model of tumor-stromal metabolic interactions in
colon cancer. We hypothesize that exploiting tumor-stromal metabolic dependencies will enhance the effects of
therapeutic strategies to inhibit tumor growth. We will test this hypothesis by using a systems biology approach
and pursuing three aims that combine computational and experimental studies: (1) Develop computational
models of intracellular metabolic pathways in CRC cells and CAFs that promote colon cancer proliferation; (2)
Develop a spatial multiscale model of colon cancer cell growth, integrating the pathway models of tumor-CAF
metabolic crosstalk; and (3) Identify and validate treatment strategies that exploit tumor and CAF metabolism.
This work applies a systems biology approach comprised of novel mathematical frameworks across scales,
quantitative imaging techniques, and physiologically-relevant preclinical models. We have assembled a
dynamic team of Principal Investigators to successfully complete this project, integrating expertise in
computational systems biology (lead by Finley) and modeling multicellular interactions in biochemical signaling
environments (lead by Macklin), driven by cutting-edge high-throughput experimental data in realistic
conditions (lead by Mumenthaler). As a result, this work will generate the first multiscale model that explicitly
accounts for molecular interactions between tumor and stromal cells in the context of colorectal cancer. We will
apply the model to identify novel strategies that inhibit tumor growth by exploiting the tumor-stromal cell
metabolic interactions, and the model predictions will be validated experimentally.
项目摘要:结直肠癌(CRC)仍然是美国最致命的癌症之一,
转移性疾病患者的5年生存率为10%。超过12万人被诊断出患有CRC
每年,导致大约50,000人死亡。即使有当前的护理标准,CRC患者也有
高复发率和对治疗的抵抗力是其高发病率和死亡率的关键因素。
肿瘤和基质细胞之间的相互作用是获得耐药性的来源。癌症相关
成纤维细胞(CAF)是肿瘤基质的主要细胞成分,在药物中起重要作用
抗药性通过促进改变的新陈代谢而成为CRC的标志。最近的研究表明
CRC细胞和CAF之间的相互代谢重编程。但是,关于
在治疗反应的背景下,这两个细胞群的代谢依赖性。因此,
量化其肿瘤和CAF细胞中的集体细胞动力学(即合作或竞争)
代谢生态系统可能会提供开发最佳癌症疗法所需的见解。
尽管有许多结直肠癌的生长和进展的计算模型,但目前尚无
定量时空描述结肠癌细胞与基质细胞之间的相互作用,或
这两个细胞群的代谢依赖性。拟议的研究通过
开发基于实验的肿瘤代谢相互作用的基于实验的多尺度计算模型
结肠癌。我们假设利用肿瘤 - 层代谢依赖性将增强
抑制肿瘤生长的治疗策略。我们将使用系统生物学方法检验该假设
并追求结合计算和实验研究的三个目标:(1)开发计算
CRC细胞和促进结肠癌增殖的CAF中细胞内代谢途径的模型; (2)
开发结肠癌细胞生长的空间多尺度模型,整合肿瘤-CAF的途径模型
代谢串扰; (3)确定并验证利用肿瘤和CAF代谢的治疗策略。
这项工作采用了一种系统生物学方法,该方法由跨尺度的新数学框架组成,
定量成像技术和与生理相关的临床前模型。我们已经组装了
动态的主要研究人员团队成功完成该项目,将专业知识整合到
计算系统生物学(Finley领导)和生化信号中的多细胞相互作用建模
环境(由麦克林(Macklin)领导),由前时候高通量实验数据驱动
条件(由Mumenthaler领导)。结果,这项工作将生成第一个明确的多尺度模型
在结直肠癌的背景下,肿瘤与基质细胞之间的分子相互作用。我们将
应用模型来确定通过利用肿瘤细胞抑制肿瘤生长的新型策略
代谢相互作用和模型预测将通过实验验证。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Stacey Deleria Finley其他文献
Stacey Deleria Finley的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Stacey Deleria Finley', 18)}}的其他基金
Modeling based design of chimeric antigen receptors for Natural Killer cell-based immunotherapy
用于基于自然杀伤细胞的免疫治疗的嵌合抗原受体的基于建模的设计
- 批准号:
10701754 - 财政年份:2022
- 资助金额:
$ 64.56万 - 项目类别:
Modeling based design of chimeric antigen receptors for Natural Killer cell-based immunotherapy
用于基于自然杀伤细胞的免疫治疗的嵌合抗原受体的基于建模的设计
- 批准号:
10557760 - 财政年份:2022
- 资助金额:
$ 64.56万 - 项目类别:
Predictive model of pro- and anti-angiogenic factors involved in breast cancer
乳腺癌中促血管生成因子和抗血管生成因子的预测模型
- 批准号:
8165999 - 财政年份:2010
- 资助金额:
$ 64.56万 - 项目类别:
Predictive model of pro- and anti-angiogenic factors involved in breast cancer
乳腺癌中促血管生成因子和抗血管生成因子的预测模型
- 批准号:
8305964 - 财政年份:2010
- 资助金额:
$ 64.56万 - 项目类别:
Predictive model of pro- and anti-angiogenic factors involved in breast cancer
乳腺癌中促血管生成因子和抗血管生成因子的预测模型
- 批准号:
8000324 - 财政年份:2010
- 资助金额:
$ 64.56万 - 项目类别:
相似国自然基金
时空序列驱动的神经形态视觉目标识别算法研究
- 批准号:61906126
- 批准年份:2019
- 资助金额:24.0 万元
- 项目类别:青年科学基金项目
本体驱动的地址数据空间语义建模与地址匹配方法
- 批准号:41901325
- 批准年份:2019
- 资助金额:22.0 万元
- 项目类别:青年科学基金项目
大容量固态硬盘地址映射表优化设计与访存优化研究
- 批准号:61802133
- 批准年份:2018
- 资助金额:23.0 万元
- 项目类别:青年科学基金项目
IP地址驱动的多径路由及流量传输控制研究
- 批准号:61872252
- 批准年份:2018
- 资助金额:64.0 万元
- 项目类别:面上项目
针对内存攻击对象的内存安全防御技术研究
- 批准号:61802432
- 批准年份:2018
- 资助金额:25.0 万元
- 项目类别:青年科学基金项目
相似海外基金
A HUMAN IPSC-BASED ORGANOID PLATFORM FOR STUDYING MATERNAL HYPERGLYCEMIA-INDUCED CONGENITAL HEART DEFECTS
基于人体 IPSC 的类器官平台,用于研究母亲高血糖引起的先天性心脏缺陷
- 批准号:
10752276 - 财政年份:2024
- 资助金额:
$ 64.56万 - 项目类别:
Translational Multimodal Strategy for Peri-Implant Disease Prevention
种植体周围疾病预防的转化多模式策略
- 批准号:
10736860 - 财政年份:2023
- 资助金额:
$ 64.56万 - 项目类别:
Using natural killer cells to prevent breast cancer metastases
使用自然杀伤细胞预防乳腺癌转移
- 批准号:
10591362 - 财政年份:2023
- 资助金额:
$ 64.56万 - 项目类别:
Detection of Emergent Mechanical Properties of Biologically Complex Cellular States
生物复杂细胞状态的紧急机械特性的检测
- 批准号:
10832871 - 财政年份:2023
- 资助金额:
$ 64.56万 - 项目类别: