Novel tools for in vitro electrophysiology and neurotrauma modeling

用于体外电生理学和神经创伤建模的新工具

基本信息

  • 批准号:
    10250763
  • 负责人:
  • 金额:
    $ 45.68万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-08-17 至 2025-01-31
  • 项目状态:
    未结题

项目摘要

Traumatic brain injury (TBI) remains a significant cause of death and disability in its own right in the United States and is an important risk factor for other neurodegenerative conditions. However, there are currently no approved therapies for TBI and its long term consequences are difficult to predict. More than 30 major phase III trials have failed without a single success so discovery of a universal therapy seems increasingly unlikely. NINDS and other federal agencies have committed tens of millions of dollars to large, observational, human studies of TBI. These studies are genotyping and deeply phenotyping TBI patients with the goal of personalizing therapy. These efforts have already revealed fascinating correlations between genotype and TBI outcome. However, genes cannot be switched on an off in humans for ethical reasons. Therefore, new tools are necessary to move from detecting correlations to testing hypotheses. This challenge has been addressed in other diseases using human, in vitro models. Human neurons generated from patients using stem cell technology retain the genetic identity of the patient. Also, genetic variants can be changed one at a time in these cells. Therefore, hypotheses about the role of genotype in disease can be tested in human, in vitro models but only if the disease pathology can reproduced in vitro. Reproducing neurotrauma pathology in vitro requires special tools because it depends intrinsically on a mechanical insult. The goal of this proposal is to provide new tools for modeling neurotrauma in vitro that can take advantage of exciting recent developments in human, in vitro cultures. Target-driven drug discovery is difficult in neurotrauma because the molecular mechanisms are complex. Phenotypic drug discovery is therefore preferable but it can succeed only if it addresses a clinically relevant phenotype. In vitro, electrical field recordings are attractive because they are analogous to electroencephalography, which is commonly used to assess TBI patients. This work will contribute the first, multi-electrode array (MEA) that can acquire field recordings from a high throughput, in vitro model. Brain organoids reproduce aspects of disease that cannot be reproduced in 2D cultures. However, electrical field recordings are difficult to acquire from brain organoids because conventional, multi-electrode arrays are designed for adherent cultures while brain organoids require ultra-low adherence conditions. Therefore, novel, sub-millimeter scale structures are proposed that will enclose an organoid inside an array of electrodes without adhering to it so that long term measures of electrical activity and connectivity can be made. These 3D MEAs will contribute new insights to many neurological disorders beside neurotrauma. Currently, there are no tools available that can apply a biofidelic, mechanical insult to an organoid culture. The proposed work will develop such a tool. In combination, these new tools will open new horizons in the field around personalizing therapy, probing disease mechanism and offering patient-specific risk assessment.
创伤性脑损伤(TBI)本身在美国仍然是死亡和残疾的重要原因。 是其他神经退行性疾病的重要危险因素。但目前 目前还没有批准的治疗TBI的方法,其长期后果难以预测。30多个主要 第三阶段试验失败了,没有一个成功,所以发现一个通用的治疗似乎越来越多 不太可能NINDS和其他联邦机构已经投入了数千万美元, TBI的观察性人类研究。这些研究是对TBI患者进行基因分型和深度表型 目的是个性化治疗。这些努力已经揭示了 基因型和TBI结果。然而,由于伦理原因,人类的基因不能被打开或关闭。 因此,需要新的工具从检测相关性转向测试假设。这 在其他疾病中,使用人类体外模型已经解决了挑战。人类神经元生成 从使用干细胞技术的患者身上提取的基因保留了患者的遗传特征。此外,遗传变异可以 在这些牢房里一次换一个因此,关于基因型在疾病中的作用的假设可以 在人类体外模型中进行测试,但仅当疾病病理学可以在体外重现时。再现 体外神经创伤病理学需要特殊的工具,因为它本质上依赖于机械损伤。 这项提案的目标是提供新的工具,在体外神经创伤建模,可以利用 人类体外培养的最新进展。目标驱动的药物发现是困难的, 神经创伤,因为分子机制是复杂的。因此,表型药物的发现 但它只有在解决临床相关表型时才能成功。体外,电场 记录很有吸引力,因为它们类似于常用的脑电描记术 来评估创伤性脑损伤患者这项工作将有助于第一,多电极阵列(MEA),可以获得场 来自高通量体外模型的记录。脑类器官复制疾病的方面, 在2D培养中繁殖。然而,电场记录很难从大脑中获得 因为传统的多电极阵列被设计用于贴壁培养,而脑 类器官需要超低粘附条件。因此,新颖的亚毫米尺度结构被 提出了一种将类器官包围在电极阵列内而不粘附于其上的方法, 可以进行电活动和连通性的测量。这些3D多边环境协定将为以下方面提供新的见解: 除了神经创伤之外还有很多神经系统疾病目前,没有可用的工具可以应用 对类器官培养物的生物破坏性机械损伤。拟议的工作将开发这样一个工具。在 结合,这些新的工具将打开新的视野,在该领域的个性化治疗,探测 疾病机制,并提供患者特异性风险评估。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

John D Finan其他文献

John D Finan的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('John D Finan', 18)}}的其他基金

Applying human in vitro models to understand the link between trauma and tau pathology
应用人体体外模型来了解创伤与 tau 病理学之间的联系
  • 批准号:
    10786930
  • 财政年份:
    2023
  • 资助金额:
    $ 45.68万
  • 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
  • 批准号:
    10411892
  • 财政年份:
    2020
  • 资助金额:
    $ 45.68万
  • 项目类别:
Novel tools for in vitro electrophysiology and neurotrauma modeling
用于体外电生理学和神经创伤建模的新工具
  • 批准号:
    10573222
  • 财政年份:
    2020
  • 资助金额:
    $ 45.68万
  • 项目类别:
A High Throughput, Human, In Vitro Model of Neuronal Stretch Injury
神经元牵张损伤的高通量人体体外模型
  • 批准号:
    9316304
  • 财政年份:
    2017
  • 资助金额:
    $ 45.68万
  • 项目类别:

相似海外基金

Novel bioinformatics methods to detect DNA and RNA modifications using Nanopore long-read sequencing
使用 Nanopore 长读长测序检测 DNA 和 RNA 修饰的新型生物信息学方法
  • 批准号:
    10792416
  • 财政年份:
    2023
  • 资助金额:
    $ 45.68万
  • 项目类别:
Developing Novel Tools to Aid Biological Evaluation of Radiolabeled ALK2 Inhibitors for Imaging in Diffuse Intrinsic Pontine Glioma
开发新工具来辅助放射性标记 ALK2 抑制剂的生物学评估,用于弥漫性内源性脑桥胶质瘤的成像
  • 批准号:
    495347
  • 财政年份:
    2023
  • 资助金额:
    $ 45.68万
  • 项目类别:
    Miscellaneous Programs
Development of a novel multipurpose model to propagate and study the tick transmission cycle of relapsing fever spirochetes from Eurasia.
开发一种新型多用途模型,用于繁殖和研究欧亚大陆回归热螺旋体的蜱传播周期。
  • 批准号:
    10651550
  • 财政年份:
    2023
  • 资助金额:
    $ 45.68万
  • 项目类别:
Novel Tools for Colon Cancer Detection and Therapy
结肠癌检测和治疗的新工具
  • 批准号:
    10480318
  • 财政年份:
    2023
  • 资助金额:
    $ 45.68万
  • 项目类别:
Urine podocyte and podocyte GL3: novel screening tools for phenotype assessment and treatment efficacy in Fabry disease
尿液足细胞和足细胞 GL3:用于法布里病表型评估和治疗效果的新型筛选工具
  • 批准号:
    10644824
  • 财政年份:
    2023
  • 资助金额:
    $ 45.68万
  • 项目类别:
Ribo-STAMPEDE: novel tools for molecular profiling of brain cell types
Ribo-STAMPEDE:脑细胞类型分子分析的新工具
  • 批准号:
    10506300
  • 财政年份:
    2022
  • 资助金额:
    $ 45.68万
  • 项目类别:
A Novel computational approach to optimize Fontan and improve surgical predictability
一种优化 Fontan 并提高手术可预测性的新型计算方法
  • 批准号:
    10557238
  • 财政年份:
    2022
  • 资助金额:
    $ 45.68万
  • 项目类别:
A Novel computational approach to optimize Fontan and improve surgical predictability
一种优化 Fontan 并提高手术可预测性的新型计算方法
  • 批准号:
    10346020
  • 财政年份:
    2022
  • 资助金额:
    $ 45.68万
  • 项目类别:
Optimizing AF ablation by a novel optogenetics and computational approach
通过新颖的光遗传学和计算方法优化 AF 消融
  • 批准号:
    10676183
  • 财政年份:
    2022
  • 资助金额:
    $ 45.68万
  • 项目类别:
Extended-Release Formulation of Mas Receptor Agonists as Novel Therapeutics for Treating Cognitive Impairment in Patients at-risk forAlzheimer's Disease-Related Dementias and Vascular Dementia
Mas 受体激动剂的缓释制剂作为治疗阿尔茨海默氏病相关痴呆和血管性痴呆风险患者认知障碍的新型疗法
  • 批准号:
    10594875
  • 财政年份:
    2022
  • 资助金额:
    $ 45.68万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了