Molecular signatures for liver cancer diagnosis and treatment stratification
肝癌诊断和治疗分层的分子特征
基本信息
- 批准号:10262066
- 负责人:
- 金额:$ 190.21万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:
- 资助国家:美国
- 起止时间:至
- 项目状态:未结题
- 来源:
- 关键词:AFP geneAffectAlgorithmsAnti-Inflammatory AgentsAreaBiologyCancer EtiologyCancer PatientCell surfaceCellsCellular StructuresCessation of lifeChinaCholangiocarcinomaClinicalClinical TrialsDNA MethylationDNA Sequence AlterationDataDiagnosisDiagnosticDiseaseDistant MetastasisEarly DiagnosisEnzymesEpigenetic ProcessEtiologyEventFamily memberGenderGene ClusterGene ExpressionGene Expression ProfileGenesGenetic TranscriptionGenomic approachGenomicsGoalsHepaticHepatic Stellate CellHeterogeneityHumanImmuneIncidenceInflammatoryInterferon-alphaInterleukin-6LesionLinkLiverLiver diseasesMalignant - descriptorMalignant Epithelial CellMalignant NeoplasmsMalignant neoplasm of liverMalignant neoplasm of pancreasMediatingMessenger RNAMetabolicMetastatic Neoplasm to the LiverMethodsMicroRNAsMiningMolecularMolecular ProfilingNeoplasm MetastasisNude MiceOncogenicOperative Surgical ProceduresOrganOutcomePatientsPatternPhenotypePopulationPopulation StudyPrimary Malignant Neoplasm of LiverPrimary NeoplasmPrimary carcinoma of the liver cellsPropertyProteinsQuantitative Reverse Transcriptase PCRRNA-Binding ProteinsRandomizedReactionRecurrenceRegulationRelapseResearchResolutionRiskRoleSTAT3 geneSamplingSignal TransductionSiteSpecimenStearoyl-CoA DesaturaseSystems IntegrationTerminal DiseaseThailandTherapeuticTissuesTumor BiologyTumor SubtypeUnited StatesUntranslated RNAViral hepatitisbasebile ductc-myc Genescancer classificationcancer diagnosiscancer stem cellcancer therapycancer typechromosome 8p losscomparative genomic hybridizationcytokineearly onsetfatty acid biosynthesisgender disparitygene productgenetic signaturegenome-widegenomic dataimprovedinterferon therapymalignant breast neoplasmmenmetabolic profilemetabolomicsmolecular markermolecular subtypesmolecular targeted therapiesmonocytemortalitynegative elongation factoroutcome forecastpersonalized medicinepredictive modelingpreventprognostic signatureresponsestem cell populationstem-like celltooltranscriptometranscriptomicstreatment stratificationtumortumor growthtumor heterogeneitytumor progression
项目摘要
We are using global genomic approaches to profile clinical specimens that are associated with different stages of liver diseases. We have identified a unique diagnostic signature for patients with early onset of liver cancer and have also developed a unique molecular signature based on the mRNA gene expression of metastatic primary hepatocellular carcinoma (HCC) specimens to predict prognosis and metastasis of HCC patients. We found that this molecular signature could identify those patients who were most at risk for recurrence even in patients with early stage disease. More recently, we integrated genomic and transcriptomic profiles to search for metastasis driver genes. We found that primary tumor lesions and their match distant metastasis were similar, however significant differences could be identified between primary tumors with or without accompanying metastasis. Moreover, metastasis genes were principally tumor type and organ-site-specific, further solidifying that metastatic propensity is inherent to the primary tumor. We have also developed a unique molecular prognostic signature based on mRNA gene expression of the liver microenvironment of HCC patients. We found that a predominant humoral cytokine profile occurs in the metastatic liver microenvironment and that a shift toward anti-inflammatory/immune-suppressive responses may promote HCC metastases. Interestingly, the tumor signature is principally different from that of liver microenvironment. We have recently explored whether activated hepatic stellate cells (A-HSCs) contribute directly to HCC recurrence. We identified and validated an A-HSC-specific gene expression signature among nontumor tissues of HCC patients that was associated with HCC recurrence and survival. Further studies showed that A-HSCs preferentially alter monocyte populations to induce protumorigenic and progressive features by shifting their gene expression from an inflammatory to an immune suppressive signature. These findings indicate that disruption of the interactions and signaling events between inflammatory cells and components of the microenvironment may be useful therapeutic strategies for preventing HCC relapse. We have also found that small non-coding RNAs, termed microRNAs are associated with metastasis and could significantly predict patient survival and relapse even in early stage disease, while certain microRNAs (e.g. microRNA-26) are gender-related. Patients with low microRNA-26 expression had poor survival and were better responders to interferon therapy than those with normal expression. We developed a qRT-PCR-based matrix template and scoring algorithm (MIR26-DX) to assign patients into either low or high microRNA-26 groups. Patients with low microRNA-26 levels selected by the template were those that responded favorably to interferon-alpha therapy. We have now initiated a multi-center randomized control clinical trial in China based on these findings (NCT01681446). We also found that miR-29 family members were significantly down-regulated in AFP+ tumors with significant inverse correlation of DNMT3A gene expression and an increase in DNA methylation. AFP also inhibited transcription of the miR-29a/b-1 locus via c-MYC and promotes tumor growth of AFP- HCC cells in nude mice. Thus, tumor biology differs considerably between AFP+ HCC and AFP- HCC and that AFP is a functional antagonist of miR-29, which may contribute to global epigenetic alterations and poor prognosis in HCC. We have also used integrative approaches to identify HCC driver genes. We have combined high-resolution, array-based comparative genomic hybridization and transcriptome analysis of HCC samples to identify and validate a 10-gene signature associated with chromosome 8p loss and poor outcome. Functional studies demonstrated that three gene products have tumor suppressive properties and two of these genes, SORBS3 and SH2D4A, are linked and inhibit STAT3-mediated IL-6 signaling in HCC cells. We have also integrated metabolite and mRNA profiles to define key signaling events of HCC cancer stem cells. Our analysis revealed that stearoyl CoA desaturase (SCD), a key enzyme involved in fatty acid biosynthesis, and its related metabolites were highly elevated in stem cell-like HCC and are associated with HCC survival and aggressiveness. In a comparison of global metabolic profiles between liver, breast and pancreatic cancer tissues, we found that metabolites are principally unique to each tissue and cancer type. Thus, metabolic profiling could be applied as cancer classification tools to differentiate tumors based on tissue of origin. We have also recently analyzed metabolomic and transcriptomic profiles jointly collected from breast cancer and HCC patients to explore the associations between and build predictors of the expression of metabolic enzymes and the levels of the metabolites participating in the reactions they catalyze. A wide range of metabolites can be successfully predicted from the transcriptome. We also developed an integrative subgraph mining approach, iSubgraph, to discover patterns of miRNA-gene networks to stratify HCC patients. This algorithm could detect cooperative regulation of miRNAs and genes with highly stable class predictions. Thus, our methods can integrate various omics data derived from different platforms and with different dynamic scales to better define molecular tumor subtypes. Through recent analyses of HCC, we revealed that a large number of RNA binding proteins (RBPs) are dysregulated and that RBP dysregulation is associated with poor prognosis. We further identified that oncogenic activation of a top candidate RBP, negative elongation factor E (NELFE), via somatic copy-number alterations enhanced MYC signaling and promoted HCC progression. Interestingly, NELFE induces a unique tumor transcriptome by selectively regulating MYC-associated genes. Thus, our results revealed NELFE as an oncogenic protein that may contribute to transcriptome imbalance in HCC through the regulation of MYC signaling. The incidence of cholangiocarcinoma (CCA), a bile-duct-related cancer and second most frequent primary liver cancer (PLC), is prevalent, especially in the north-east area of Thailand. We initiated the Thailand Initiative for Genomics and Expression Research in Liver Cancer (TIGER-LC) to provide a comprehensive global analysis of genomic alterations related to the primary liver cancer types in Thai liver cancer patients. Recently, we have identified common molecular subtypes with key drivers linked to similar prognosis among 199 Thai CCA and HCC patients through systems integration of genomics, transcriptomics, and metabolomics. Our results indicate that ICC and HCC, while clinically treated as separate entities, share common molecular determinants, suggesting that a unified molecular landscape of liver cancer is required to improve diagnosis and therapy. Intratumor molecular heterogeneity of hepatocellular carcinoma is partly attributed to the presence of hepatic cancer stem cells (CSCs). Different CSC populations defined by various cell surface markers may contain different oncogenic drivers, posing a challenge in defining molecularly targeted therapeutics. We combined transcriptomic and functional analyses of hepatocellular carcinoma cells at the single-cell level to assess the degree of CSC heterogeneity. We found that hepatic CSCs at the single-cell level are phenotypically, functionally, and transcriptomically heterogeneous. CSC subpopulations contain distinct molecular signatures. Interestingly, distinct genes within different CSC subpopulations are independently associated with hepatocellular carcinoma prognosis, suggesting that a diverse hepatic CSC transcriptome affects intratumor heterogeneity and tumor progression.
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Xin Wei Wang其他文献
Xin Wei Wang的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Xin Wei Wang', 18)}}的其他基金
Roles of microbiota-mediated hepatocarcinogenesis
微生物介导的肝癌发生的作用
- 批准号:
10925957 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
Viral exposure signatures may define individuals vulnerable for COVID-19
病毒暴露特征可能会定义个体是否容易感染 COVID-19
- 批准号:
10702767 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
Molecular signatures for liver cancer diagnosis and treatment stratification
肝癌诊断和治疗分层的分子特征
- 批准号:
10702334 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
The identification of human hepatocellular carcinoma metastasis genes
人肝癌转移基因的鉴定
- 批准号:
10926086 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
Mechanism of viral hepatitis-mediated hepatocarcinogenesis
病毒性肝炎介导的肝癌发生机制
- 批准号:
10262018 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
The identification of human hepatocellular carcinoma metastasis genes
人肝癌转移基因的鉴定
- 批准号:
10262174 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
The role of cancer stem cells in liver cancer heterogeneity and subtypes
癌症干细胞在肝癌异质性和亚型中的作用
- 批准号:
10262173 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
Roles of microbiota-mediated hepatocarcinogenesis
微生物介导的肝癌发生的作用
- 批准号:
10702289 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
Identification of viral exposure signatures for early detection of liver cancer
鉴定病毒暴露特征以早期发现肝癌
- 批准号:
10703084 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
Viral exposure signatures may define individuals vulnerable for COVID-19
病毒暴露特征可能会定义个体是否容易感染 COVID-19
- 批准号:
10262566 - 财政年份:
- 资助金额:
$ 190.21万 - 项目类别:
相似海外基金
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
- 批准号:
BB/Z514391/1 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
- 批准号:
2312555 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
- 批准号:
2327346 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
- 批准号:
ES/Z502595/1 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
- 批准号:
23K24936 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
- 批准号:
ES/Z000149/1 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
- 批准号:
2901648 - 财政年份:2024
- 资助金额:
$ 190.21万 - 项目类别:
Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
- 批准号:
488039 - 财政年份:2023
- 资助金额:
$ 190.21万 - 项目类别:
Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
- 批准号:
23K00129 - 财政年份:2023
- 资助金额:
$ 190.21万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
- 批准号:
2883985 - 财政年份:2023
- 资助金额:
$ 190.21万 - 项目类别:
Studentship