Methods development for "Omics" data

“组学”数据的方法开发

基本信息

项目摘要

There are a number of challenges in conducting proper variable and statistical inference in working across high dimensional biological data. My methods develop work this year has focused improving computational and statistical approaches for genome-wide association studies, high throughput metabolomics data, and integrative genomics studies. With my recently graduated student Dr. Tao Jiang, we developed a new upper bound of the regularization parameter in sparse group Lasso based on an estimated lower bound of the proportion of false null hypotheses with confidence. The bound is estimated by applying the empirical distribution of dependent or independent p-values from single marker/variable analysis, where a second-level significance testing, the higher criticism statistic, is used. An upper bound of the tuning parameter in Lasso is decided corresponding to the lower bound of the proportion of false null hypotheses. Thus, the tuning range is narrow since the upper bound of is lower. The final decision of non-zero estimates will contain more variables so that the power of modified GWAS is higher than or equal to the original sparse group Lasso. We demonstrate the performance of our method using both simulation experiments and a real data application in lipid trait genetics from the Action to Control Cardiovascular Risk in Diabetes clinical trial. An R package was developed. Current applications of knockoff methods use linear regression models and conduct variable selection only for variables existing in model functions. In a project with Dr. Tao Jiang, and with Dr. Yuanyuan Li, we extended the use of knockoffs for machine learning with boosted trees, which are successful and widely used in problems where no prior knowledge of model function is required. We developed a novel strategy for conducting variable selection without prior model topology knowledge using the knockoff method with boosted tree models. We extended the current knockoff method to model-free variable selection through the use of tree-based models. We tested and compared these methods with the original knockoff method regarding their ability to control type I errors and power. In simulation tests, we compared the properties and performance of importance test statistics of tree models. Combination drug therapy has been a mainstay of cancer treatment for decades and has been shown to reduce host toxicity and prevent the development of acquired drug resistance. Therefore, it is crucial to develop computational approaches to predict drug synergy and guide experimental design for the discovery of rational combinations for therapy. With my student Jun Ma, we developed a new deep learning approach to predict synergistic drug combinations by integrating gene expression profiles from cell lines and chemical structure data. Specifically, we use principal component analysis to reduce the dimensionality of the chemical descriptor data and gene expression data. We then propagate the low-dimensional data through a neural network to predict drug synergy values. The use of dimension reduction dramatically decreases the computation time, without losing accuracy. Additionally, my recently graduated PhD student Dr. Jun Ma we worked on developing an approach that addresses challenges in nonlinear dose-response relationships. Nonlinear dose-response relationships exist extensively in the cellular, biochemical, and physiologic processes that are affected by varying levels of biological, chemical, or radiation stress. Nonlinear dose-response relationships exist extensively in the cellular, biochemical, and physiologic processes that are affected by varying levels of biological, chemical, or radiation stress. Therefore, we propose the use of an EA for dose-response modeling for a range of potential response model functional forms. This new method can not only fit the most commonly used nonlinear dose-response models (eg, exponential models and 3-, 4-, and 5-parameter logistic models) but also select the best model if no model assumption is made, which is especially useful in the case of high-throughput curve fitting. An R package to implement the method was developed. Ongoing projects building onto methods for detecting gene-environment interactions are currently ongoing, using variance QTLs to prioritize single nucleotide polymorphisms for detecting gene-gene interactions.
在处理高维生物数据时进行适当的变量和统计推断存在许多挑战。 我今年的方法开发工作重点是改进全基因组关联研究、高通量代谢组学数据和综合基因组学研究的计算和​​统计方法。 与我最近毕业的学生江涛博士一起,我们基于有信心的错误零假设比例的估计下界,开发了稀疏组 Lasso 中正则化参数的新上限。通过应用来自单标记/变量分析的相关或独立 p 值的经验分布来估计界限,其中使用二级显着性检验(更高的批评统计量)。 Lasso 中调整参数的上限是根据假零假设比例的下限来决定的。因此,由于 的上限较低,因此调整范围较窄。非零估计的最终决策将包含更多的变量,使得修改后的GWAS的功效高于或等于原始稀疏组Lasso。我们使用模拟实验和来自糖尿病临床试验中控制心血管风险行动的脂质性状遗传学的真实数据应用来证明我们的方法的性能。 开发了 R 包。 目前仿制方法的应用使用线性回归模型,并且仅针对模型函数中存在的变量进行变量选择。在江涛博士和李媛媛博士的一个项目中,我们通过增强树扩展了机器学习中仿制品的使用,这种方法取得了成功,并广泛应用于不需要模型函数先验知识的问题。我们开发了一种新颖的策略,使用带有提升树模型的knockoff方法,在没有先验模型拓扑知识的情况下进行变量选择。我们通过使用基于树的模型将当前的仿制方法扩展到无模型变量选择。我们测试了这些方法并将其与原始仿制方法进行了比较,了解它们控制 I 类错误和功率的能力。在模拟测试中,我们比较了树模型重要性测试统计的性质和性能。 几十年来,联合药物治疗一直是癌症治疗的支柱,并已被证明可以减少宿主毒性并防止获得性耐药性的发展。因此,开发计算方法来预测药物协同作用并指导实验设计以发现合理的治疗组合至关重要。我们与我的学生 Jun Ma 一起开发了一种新的深度学习方法,通过整合细胞系的基因表达谱和化学结构数据来预测协同药物组合。具体来说,我们使用主成分分析来降低化学描述符数据和基因表达数据的维度。然后,我们通过神经网络传播低维数据来预测药物协同值。降维的使用极大地减少了计算时间,而不会损失准确性。 此外,我最近毕业的博士生马军博士致力于开发一种解决非线性剂量反应关系挑战的方法。非线性剂量反应关系广泛存在于受不同程度的生物、化学或辐射应激影响的细胞、生化和生理过程中。非线性剂量反应关系广泛存在于受不同程度的生物、化学或辐射应激影响的细胞、生化和生理过程中。因此,我们建议使用 EA 对一系列潜在反应模型功能形式的剂量反应建模。这种新方法不仅可以拟合最常用的非线性剂量反应模型(例如指数模型和3、4、5参数Logistic模型),而且可以在不做模型假设的情况下选择最佳模型,这在高通量曲线拟合的情况下特别有用。开发了一个 R 包来实现该方法。 目前正在进行的项目正在构建用于检测基因-环境相互作用的方法,使用方差QTL来优先考虑单核苷酸多态性以检测基因-基因相互作用。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Alison Motsinger-Reif其他文献

Alison Motsinger-Reif的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Alison Motsinger-Reif', 18)}}的其他基金

Genetic Basis of Genotype-by-Environment Interactions Underlying Physiological Mo
生理学中基因型与环境相互作用的遗传基础
  • 批准号:
    8296268
  • 财政年份:
    2011
  • 资助金额:
    $ 80.39万
  • 项目类别:
Genetic Basis of Genotype-by-Environment Interactions Underlying Physiological Mo
生理学中基因型与环境相互作用的遗传基础
  • 批准号:
    8162018
  • 财政年份:
    2011
  • 资助金额:
    $ 80.39万
  • 项目类别:
Genetic Basis of Genotype-by-Environment Interactions Underlying Physiological Mo
生理学中基因型与环境相互作用的遗传基础
  • 批准号:
    8450932
  • 财政年份:
    2011
  • 资助金额:
    $ 80.39万
  • 项目类别:
Genetic Basis of Genotype-by-Environment Interactions Underlying Physiological Mo
生理学中基因型与环境相互作用的遗传基础
  • 批准号:
    8634123
  • 财政年份:
    2011
  • 资助金额:
    $ 80.39万
  • 项目类别:
Statistical Genetics of Dose Response Traits
剂量反应特征的统计遗传学
  • 批准号:
    10928611
  • 财政年份:
  • 资助金额:
    $ 80.39万
  • 项目类别:
Statistical Genetics of Outcomes and Drug Response in Patients with Type 2 Diabetes.
2 型糖尿病患者的结果和药物反应的统计遗传学。
  • 批准号:
    10928613
  • 财政年份:
  • 资助金额:
    $ 80.39万
  • 项目类别:
The Personalized Environment and Genes Study
个性化环境和基因研究
  • 批准号:
    10928622
  • 财政年份:
  • 资助金额:
    $ 80.39万
  • 项目类别:
COVID-19 Pandemic Vulnerability
COVID-19 流行病脆弱性
  • 批准号:
    10928616
  • 财政年份:
  • 资助金额:
    $ 80.39万
  • 项目类别:
Collaborative Applied Statistics
协作应用统计
  • 批准号:
    10260281
  • 财政年份:
  • 资助金额:
    $ 80.39万
  • 项目类别:
Statistical Genetics of Outcomes and Drug Response in Patients with Type 2 Diabetes.
2 型糖尿病患者的结果和药物反应的统计遗传学。
  • 批准号:
    10260284
  • 财政年份:
  • 资助金额:
    $ 80.39万
  • 项目类别:

相似海外基金

How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Training Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Standard Grant
RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Standard Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Fellowship
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Research Grant
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Studentship
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Operating Grants
New Tendencies of French Film Theory: Representation, Body, Affect
法国电影理论新动向:再现、身体、情感
  • 批准号:
    23K00129
  • 财政年份:
    2023
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Grant-in-Aid for Scientific Research (C)
The Protruding Void: Mystical Affect in Samuel Beckett's Prose
突出的虚空:塞缪尔·贝克特散文中的神秘影响
  • 批准号:
    2883985
  • 财政年份:
    2023
  • 资助金额:
    $ 80.39万
  • 项目类别:
    Studentship
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了