Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
基本信息
- 批准号:10259840
- 负责人:
- 金额:$ 38.39万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-30 至 2025-06-30
- 项目状态:未结题
- 来源:
- 关键词:AffectAgeAge related macular degenerationAgingAnimal ModelAnimalsAutomobile DrivingAutopsyBiochemical ReactionBiological ModelsBiologyBlindnessCellsCollaborationsColor VisionsConeCritical PathwaysDark AdaptationDarknessDiseaseElderlyElectrodesElectrophysiology (science)ElectroretinographyEnvironmentEyeEye BanksFaceGeographic LocationsGoalsHealthHourHumanIndividualKineticsKnowledgeLightLight AdaptationsLightingMaintenanceMeasuresMediatingMethodsMolecularMuller&aposs cellMusNational Eye InstituteNatural regenerationNeural RetinaOrganOrgan DonorPanthera leoPathogenesisPathway interactionsPeripheralPhotonsPhotophobiaPhotoreceptorsPigment EpitheliumPigmentsPrimatesProcessProtocols documentationReadingRegenerative pathwayResearchRetinaRetinal ConeRetinal PigmentsRetinal maculaRodRodentRoleSalamanderSamplingStrategic PlanningStructure of retinal pigment epitheliumSuctionSunlightTechniquesTestingTimeTissue DonorsTissuesTransportationUtahVisionVision researchWorkbasedisorder of macula of retinaeffective therapyexperienceexperimental studyfovea centralishuman diseaseimprovedinsightmaculamacular dystrophynonhuman primatepreventresponseretinal rodstissue preparationvisual cycle
项目摘要
ABSTRACT
During the past 2-3 decades important work has been done to resolve the mechanisms of light and dark
adaptation as well as disease in the mammalian rod and cone photoreceptors using mouse as a model system.
However, the mouse is a nocturnal animal that lacks the macula, a specialized central region in primate retina
that provides high-acuity color vision critical for human everyday survival. Consequently, mechanisms of human
daytime vision or diseases that disrupt photoreceptors in the macula, such as Age-Related Macular
Degeneration (AMD), are challenging to study in mice. For example, there is no effective treatment for the dry
form of AMD, the most common cause of blindness among the elderly. Thus, there is a critical need to better
understand the biology of the photoreceptors in the human macula in health and disease. This is particularly true
of cone photoreceptors compared to rods that have been more extensively studied. Recent studies have
established both light-independent and light-dependent pigment regeneration pathways within the mouse retina
isolated from the pigment epithelium (RPE). These pathways regenerate pigment via Müller cells in cone-specific
pathways (light-independent and -dependent intraretinal visual cycles) or in the photoreceptor cells themselves
by a cell-autonomous regeneration mechanism. However, nothing is known about these mechanisms in the
human macula or fovea. The goal of this proposal is to determine the contribution of the RPE-independent
pigment regeneration pathways to the ability of cones to dark adapt quickly and maintain sensitivity in bright light
specifically in the human macula. Our central hypothesis is that the canonical visual cycle that operates via the
RPE is too slow to maintain vision in bright light or mediate dark adaptation during rapidly changing levels of
illumination in the human macula. The work is organized into two specific aims. These are to determine the
contribution of the light-independent intraretinal visual cycle (Aim I) and photic pigment regeneration pathways
(Aim II) to dark adaptation and maintenance of light sensitivity of human macular cones. The experiments will
employ ex vivo electroretinography and single cell suction electrode recordings. These techniques are well
suited for assessing the role of visual cycles and cell-autonomous pigment regeneration pathways in dark
adaptation and maintenance of light sensitivity, respectively. We will leverage our experience and collaborations
with Eye Banks that we have established during the past three years to develop donor criteria and protocols to
record light-evoked responses of macular cones from organ or research donor human eyes 1 – 5 hours
postmortem. Results of these studies will determine the contribution of different visual cycle pathways to human
vision mediated by the cones across geographical regions of the retina, including the fovea. This information will
provide a basis for studies to elucidate pathogenesis of macular dystrophies and potential targets to improve
vision or prevent vision loss in aging or diseased human eye.
摘要
在过去的2- 30年里,人们已经做了重要的工作来解决光明和黑暗的机制
使用小鼠作为模型系统,在哺乳动物的视杆和视锥光感受器中的适应以及疾病。
然而,老鼠是一种夜行动物,缺乏黄斑,一个专门的中心区域在灵长类视网膜
它提供了对人类日常生存至关重要的高敏锐度色觉。因此,人类的机制
日间视力或破坏黄斑中的光感受器的疾病,例如视网膜相关黄斑变性。
退行性变(AMD)在小鼠中的研究具有挑战性。例如,没有有效的治疗方法,
AMD是老年人失明的最常见原因。因此,迫切需要更好地
了解健康和疾病中人类黄斑中光感受器的生物学。尤其如此
视锥细胞和视杆细胞相比的差异已经被更广泛的研究。最近的研究
在小鼠视网膜内建立了光非依赖性和光依赖性色素再生途径
分离自色素上皮(RPE)。这些途径通过Müller细胞再生色素,
光通路(光依赖性和非依赖性视网膜内视觉周期)或感光细胞本身
通过细胞自主再生机制。然而,对于这些机制,
人黄斑或中央凹。该提案的目标是确定独立于RPE的
色素再生途径使视锥细胞能够迅速适应黑暗并在强光下保持敏感性
特别是在人类的黄斑区我们的中心假设是,通过视觉系统运作的典型视觉周期,
RPE太慢而不能在强光下维持视力,或在快速变化的视网膜色素水平期间介导暗适应。
人类黄斑的照明。这项工作分为两个具体目标。这些都是为了确定
光非依赖性视网膜内视觉周期(Aim I)和光色素再生途径的贡献
(Aim II)暗适应和维持人黄斑视锥细胞的光敏感性。实验将
使用离体视网膜电图和单细胞抽吸电极记录。这些技术很好地
适用于评估黑暗中视觉周期和细胞自主色素再生途径的作用
光敏感性的适应和维持。我们将利用我们的经验和合作
我们在过去三年中建立了眼库,以制定捐赠标准和协议,
记录来自器官或研究供体人眼的黄斑视锥的光诱发反应1 - 5小时
是死后造成的这些研究的结果将确定不同的视觉周期途径对人类的贡献
由视锥介导的跨越视网膜的地理区域(包括中央凹)的视觉。这些信息将
为阐明黄斑营养不良的发病机制和改善黄斑营养不良的潜在靶点的研究提供基础。
视力或防止老化或患病人眼视力丧失。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Frans Vinberg其他文献
Frans Vinberg的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Frans Vinberg', 18)}}的其他基金
Functional plasticity in retinal degenerative disease
视网膜退行性疾病的功能可塑性
- 批准号:
10637293 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10671007 - 财政年份:2020
- 资助金额:
$ 38.39万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10033250 - 财政年份:2020
- 资助金额:
$ 38.39万 - 项目类别:
Pigment Regeneration Mechanisms in the Human Retina
人类视网膜色素再生机制
- 批准号:
10450119 - 财政年份:2020
- 资助金额:
$ 38.39万 - 项目类别:
Assessment of Retinal Function in Health and Disease From Mouse To Human
评估从小鼠到人类的健康和疾病中的视网膜功能
- 批准号:
9535533 - 财政年份:2017
- 资助金额:
$ 38.39万 - 项目类别:
ASSESSMENT OF RETINAL FUNCTION IN HEALTH AND DISEASE FROM MOUSE TO HUMAN
从小鼠到人类的健康和疾病中的视网膜功能评估
- 批准号:
9249586 - 财政年份:2016
- 资助金额:
$ 38.39万 - 项目类别:
ASSESSMENT OF RETINAL FUNCTION IN HEALTH AND DISEASE FROM MOUSE TO HUMAN
从小鼠到人类的健康和疾病中的视网膜功能评估
- 批准号:
9088931 - 财政年份:2016
- 资助金额:
$ 38.39万 - 项目类别:
相似国自然基金
靶向递送一氧化碳调控AGE-RAGE级联反应促进糖尿病创面愈合研究
- 批准号:JCZRQN202500010
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
对香豆酸抑制AGE-RAGE-Ang-1通路改善海马血管生成障碍发挥抗阿尔兹海默病作用
- 批准号:2025JJ70209
- 批准年份:2025
- 资助金额:0.0 万元
- 项目类别:省市级项目
AGE-RAGE通路调控慢性胰腺炎纤维化进程的作用及分子机制
- 批准号:
- 批准年份:2024
- 资助金额:0 万元
- 项目类别:面上项目
甜茶抑制AGE-RAGE通路增强突触可塑性改善小鼠抑郁样行为
- 批准号:2023JJ50274
- 批准年份:2023
- 资助金额:0.0 万元
- 项目类别:省市级项目
蒙药额尔敦-乌日勒基础方调控AGE-RAGE信号通路改善术后认知功能障碍研究
- 批准号:
- 批准年份:2022
- 资助金额:33 万元
- 项目类别:地区科学基金项目
补肾健脾祛瘀方调控AGE/RAGE信号通路在再生障碍性贫血骨髓间充质干细胞功能受损的作用与机制研究
- 批准号:
- 批准年份:2022
- 资助金额:52 万元
- 项目类别:面上项目
LncRNA GAS5在2型糖尿病动脉粥样硬化中对AGE-RAGE 信号通路上相关基因的调控作用及机制研究
- 批准号:n/a
- 批准年份:2022
- 资助金额:10.0 万元
- 项目类别:省市级项目
围绕GLP1-Arginine-AGE/RAGE轴构建探针组学方法探索大柴胡汤异病同治的效应机制
- 批准号:81973577
- 批准年份:2019
- 资助金额:55.0 万元
- 项目类别:面上项目
AGE/RAGE通路microRNA编码基因多态性与2型糖尿病并发冠心病的关联研究
- 批准号:81602908
- 批准年份:2016
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
高血糖激活滑膜AGE-RAGE-PKC轴致骨关节炎易感的机制研究
- 批准号:81501928
- 批准年份:2015
- 资助金额:18.0 万元
- 项目类别:青年科学基金项目
相似海外基金
I(eye)-SCREEN: A real-world AI-based infrastructure for screening and prediction of progression in age-related macular degeneration (AMD) providing accessible shared care
I(eye)-SCREEN:基于人工智能的现实基础设施,用于筛查和预测年龄相关性黄斑变性 (AMD) 的进展,提供可及的共享护理
- 批准号:
10102692 - 财政年份:2024
- 资助金额:
$ 38.39万 - 项目类别:
EU-Funded
Inhibiting Neovascularization and Subretinal Fibrosis in Neovascular Age-Related Macular Degeneration
抑制新生血管性年龄相关性黄斑变性的新生血管形成和视网膜下纤维化
- 批准号:
10639785 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Inhibition of melanogenesis in retinal pigment epithelium, a contributing factor in age-related macular degeneration
抑制视网膜色素上皮中的黑色素生成,这是年龄相关性黄斑变性的一个促成因素
- 批准号:
23K09052 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Grant-in-Aid for Scientific Research (C)
Deciphering the role of osteopontin in the aging eye and age-related macular degeneration
破译骨桥蛋白在眼睛老化和年龄相关性黄斑变性中的作用
- 批准号:
10679287 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Evaluation of New Anti-inflammatory Treatments for Age-Related Macular Degeneration
年龄相关性黄斑变性的新型抗炎治疗方法的评价
- 批准号:
10642988 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Progression of Early Atrophic Lesions in Age-related Macular degeneration
年龄相关性黄斑变性早期萎缩性病变的进展
- 批准号:
10635325 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Cellular and molecular mechanisms of AIM2 and NLRP3 inflammasome activation in age-related macular degeneration
年龄相关性黄斑变性中 AIM2 和 NLRP3 炎症小体激活的细胞和分子机制
- 批准号:
10584110 - 财政年份:2023
- 资助金额:
$ 38.39万 - 项目类别:
Elucidation of roles of mast cells and macrophages in the pathogenesis of age-related macular degeneration
阐明肥大细胞和巨噬细胞在年龄相关性黄斑变性发病机制中的作用
- 批准号:
22H03243 - 财政年份:2022
- 资助金额:
$ 38.39万 - 项目类别:
Grant-in-Aid for Scientific Research (B)
AMD Mitochondria Modulate Expression of microRNA 135b-5p and 148a-3p in RPE Cybrids: Implications for Age-related Macular Degeneration
AMD 线粒体调节 RPE Cybrids 中 microRNA 135b-5p 和 148a-3p 的表达:对年龄相关性黄斑变性的影响
- 批准号:
10433610 - 财政年份:2022
- 资助金额:
$ 38.39万 - 项目类别:
Targeting the inflammatory response in age-related macular degeneration
针对年龄相关性黄斑变性的炎症反应
- 批准号:
10504138 - 财政年份:2022
- 资助金额:
$ 38.39万 - 项目类别: