Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
基本信息
- 批准号:10260556
- 负责人:
- 金额:$ 53.37万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2020
- 资助国家:美国
- 起止时间:2020-09-15 至 2025-08-31
- 项目状态:未结题
- 来源:
- 关键词:AdoptedAlgorithmsAnimal ModelAutocrine CommunicationBioinformaticsBiologicalBiological AssayBiologyBone MarrowBreast Cancer CellBreast Cancer PatientBreast cancer metastasisCSPG4 geneCancer ModelCell Differentiation processCellsClinicalClinical ResearchComputational algorithmComputer AssistedComputer ModelsDataDevelopmentDiagnosisDiseaseEndothelial CellsExcisionExhibitsFoundationsFrequenciesGenetically Engineered MouseGoalsHomeostasisImageIn SituIndolentKnowledgeLaboratoriesLeadMalignant NeoplasmsMapsMediatingMesenchymal Stem CellsMetastatic Neoplasm to the BoneMicrometastasisMicroscopicMicroscopyModelingMolecularMolecular ProfilingNeoplasm MetastasisOsteogenesisOsteolysisOsteolyticOutcomeOvarianParacrine CommunicationPatientsPharmaceutical PreparationsPlayPrimary NeoplasmProcessQuality of lifeResolutionRoleSeedsSeriesSignal PathwaySignal TransductionStromal CellsSymptomsTherapeuticTransforming Growth Factor betabasebioimagingbisphosphonatebonebone cellcancer cellcell typeclinical translationdesigndrug efficacydrug repurposingimprovedlaser capture microdissectionmalignant breast neoplasmmulti-photonneoplastic cellosteogenicpredictive modelingpreventrecruitrepairedresponsespatiotemporalsuccesstherapeutic targettooltranscriptometranscriptomicstumortumor microenvironment
项目摘要
ABSTRACT
About 20-40% of breast cancer patients develop metastasis to the bone, years to even decades after surgical
removal of primary tumors. Little is known about the biology of the latent, microscopic bone metastases before
they outgrow to overt osteolytic macrometastases. This represents a significant gap in our understanding of
bone metastasis. Targeting cancer cells that have not fully adapted to the bone microenvironment might
provide therapeutic benefit and prevent the occurrence of overt metastases. Bone and bone marrow comprise
of several highly distinctive microenvironment niches. Dormant, single disseminated tumor cells (DTCs) reside
in the perivascular niche, whereas proliferative, multi-cell bone micrometastases (BMMs) are found in the
osteogenic niche that exhibits features of active osteogenesis. Mechanisms through which the transition of
different niches occurs to switch fates of metastatic seeds remain elusive. The overall objectives of this project
are to investigate the spatiotemporal dynamics, the molecular crosstalk, and the therapeutic targets underlying
the interaction between breast cancer cells and different microenvironment niches in bone. We will pursue
three specific aims. First, we will dissect the spatiotemporal dynamics of the perivascular and osteogenic
niches and the cancer-niche interactions in bone micrometastasis models. We will use high-resolution, whole-
bone, multi-photon microscopy and laser-captured microdissection (LCM) followed by transcriptome profiling
(LCM-seq) to obtain relative localization and mutual impacts between cancer cells and niche cells in situ.
Second, we will integrate transcriptomic and imaging data and develop computational models for discovery of
new mechanisms and therapies toward blockade of cancer-niche interactions. Established and new algorithms
will be used to uncover the microenvironment molecules, and autocrine and paracrine signaling pathways
mediating niche-tumor interactions. Drug-repurposing analyses will be carried out to identify potential therapies
that have already been used for other diseases. We will achieve a systematic understanding of early-stage
bone colonization and generate testable mechanistic and therapeutic hypotheses. Third, we will validate the
discovered mechanisms and predicted drug efficacies in animal models. The Zhang laboratory has adopted
and established a series of genetically engineered mouse models and bone metastasis assays, which will be
utilized to validate computational predictions generated by computational modeling by the Wong group. Both
metastatic burden and frequency/distribution of DTCs and BMMs will be examined as endpoints. This study will
unbiasedly profile the molecular process of early stage metastasis progression in the bone from DTCs to
BMMs at single-to-few cell resolutions. This knowledge is unprecedented and critical for the ultimate
understanding of metastasis latency, a long-standing clinical challenge. The modeling tool developed through
this study will likely be applicable to other biological contexts involving highly spatiotemporally specific cancer-
niche interaction. The computer-aided drug repurposing will likely lead to fast clinical translation.
摘要
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
STEPHEN TC WONG其他文献
STEPHEN TC WONG的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('STEPHEN TC WONG', 18)}}的其他基金
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
- 批准号:
10677032 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
- 批准号:
10556374 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10403970 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10172878 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10632014 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
- 批准号:
10337313 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
- 批准号:
10028242 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
- 批准号:
10056730 - 财政年份:2020
- 资助金额:
$ 53.37万 - 项目类别:
Systematic Alzheimer's disease drug repositioning (SMART) based on bioinformatics-guided phenotype screening and image-omics
基于生物信息学引导的表型筛选和图像组学的系统性阿尔茨海默病药物重新定位(SMART)
- 批准号:
10431823 - 财政年份:2018
- 资助金额:
$ 53.37万 - 项目类别:
Center for Systematic Modeling of Cancer Development
癌症发展系统建模中心
- 批准号:
9103432 - 财政年份:2010
- 资助金额:
$ 53.37万 - 项目类别:
相似海外基金
DMS-EPSRC: Asymptotic Analysis of Online Training Algorithms in Machine Learning: Recurrent, Graphical, and Deep Neural Networks
DMS-EPSRC:机器学习中在线训练算法的渐近分析:循环、图形和深度神经网络
- 批准号:
EP/Y029089/1 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Research Grant
CAREER: Blessing of Nonconvexity in Machine Learning - Landscape Analysis and Efficient Algorithms
职业:机器学习中非凸性的祝福 - 景观分析和高效算法
- 批准号:
2337776 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Continuing Grant
CAREER: From Dynamic Algorithms to Fast Optimization and Back
职业:从动态算法到快速优化并返回
- 批准号:
2338816 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Continuing Grant
CAREER: Structured Minimax Optimization: Theory, Algorithms, and Applications in Robust Learning
职业:结构化极小极大优化:稳健学习中的理论、算法和应用
- 批准号:
2338846 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Continuing Grant
CRII: SaTC: Reliable Hardware Architectures Against Side-Channel Attacks for Post-Quantum Cryptographic Algorithms
CRII:SaTC:针对后量子密码算法的侧通道攻击的可靠硬件架构
- 批准号:
2348261 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Standard Grant
CRII: AF: The Impact of Knowledge on the Performance of Distributed Algorithms
CRII:AF:知识对分布式算法性能的影响
- 批准号:
2348346 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Standard Grant
CRII: CSR: From Bloom Filters to Noise Reduction Streaming Algorithms
CRII:CSR:从布隆过滤器到降噪流算法
- 批准号:
2348457 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Standard Grant
EAGER: Search-Accelerated Markov Chain Monte Carlo Algorithms for Bayesian Neural Networks and Trillion-Dimensional Problems
EAGER:贝叶斯神经网络和万亿维问题的搜索加速马尔可夫链蒙特卡罗算法
- 批准号:
2404989 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Standard Grant
CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
- 批准号:
2339310 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Continuing Grant
CAREER: Improving Real-world Performance of AI Biosignal Algorithms
职业:提高人工智能生物信号算法的实际性能
- 批准号:
2339669 - 财政年份:2024
- 资助金额:
$ 53.37万 - 项目类别:
Continuing Grant