Convergent AI for Precise Breast Cancer Risk Assessment

融合人工智能精准乳腺癌风险评估

基本信息

  • 批准号:
    10028242
  • 负责人:
  • 金额:
    $ 53.36万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-06-01 至 2025-05-31
  • 项目状态:
    未结题

项目摘要

ABSTRACT Breast cancer continues to be one of the leading causes of cancer death among women in the United States, despite the advances made in the identification of prognostic and predictive markers for breast cancer treatment. Mammographic reporting is the first step in the screening and diagnosis of breast cancer. Abnormal mammographic findings such as a mass, abnormal calcifications, architectural distortion, and asymmetric density can lead to a cancer diagnosis. The American College of Radiology developed the Breast Imaging Reporting and Data System (BI-RADS) lexicon to standardize mammographic reporting to facilitate biopsy decision-making. However, application of the BI-RADS lexicon has resulted in substantial inter-observer variability, including inappropriate term usage and missing data. This observer variability has lead in part to a considerable variation in the rate of biopsy across the US, with a majority of breast biopsies ultimately found to be benign lesions. Hence, there is the need for a system that can better stratify the risk of cancer and define a more optimum threshold for biopsy. To address this need, we propose to develop an intelligent-augmented risk assessment system for breast cancer management based on multimodality image and clinical information with deep learning and data mining techniques. This study aims to develop a well-defined, novel risk assessment system incorporating multi-modality datasets with a novel predictive model that outputs a probability measure of cancer that is more clinically relevant and informative than the six discrete BI-RADS scores. Using mammographic or breast ultrasound BI- RADS reporting signatures and radiomics features, a predictive model that is more precise and clinically relevant may be developed to target well-characterized and defined specific biopsy patient subgroups rather than a broad heterogeneous biopsy group. Our proposed technique entails a novel strategy using Natural Language Processing to extract pertinent clinical risk factors related to breast cancer from vast amounts of patient charts automatically and integrate them with corresponding image-omics data and radiologist- generated reports. We will extract and quantitate image features from both large amounts of mammography and breast ultrasound images and combine them with the radiology reports and pertinent clinical risk profile and other patient characteristics to generate a risk assessment score to aid radiologists and oncologists in breast cancer risk assessment and biopsy decisions. Such a web-based application tool will be the first breast cancer risk assessment system based on integrative radiomics data augmented by AI methods. The iBRISK tool will enhance engagement between the patient and clinician for making an informed decision on whether or not to biopsy. Our hypothesis is that BI-RADS reports and the imaging metrics contain significant features for the breast cancer risk assessment and biopsy decision-making. By using BI-RADS reports and the imaging metrics, we will be able to develop new metrics to better breast cancer risk assessment. The novelty of the breast cancer risk assessment system is that it will incorporate a new predictive model that deploys deep learning and AI technology to provide a more reliable stratification of the BI-RADS subtypes for breast cancer risk assessment and reduce unnecessary breast biopsies and patients’ anxiety.
摘要

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

STEPHEN TC WONG其他文献

STEPHEN TC WONG的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('STEPHEN TC WONG', 18)}}的其他基金

Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10677032
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10260556
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
  • 批准号:
    10556374
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10403970
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10172878
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Convergent AI for Precise Breast Cancer Risk Assessment
融合人工智能精准乳腺癌风险评估
  • 批准号:
    10632014
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Systematic identification of astrocyte-tumor crosstalk regulating brain metastatic tumors
星形胶质细胞-肿瘤串扰调节脑转移瘤的系统鉴定
  • 批准号:
    10337313
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Spatiotemporal modeling of cancer-niche interactions in breast cancer bone metastasis
乳腺癌骨转移中癌症-生态位相互作用的时空模型
  • 批准号:
    10056730
  • 财政年份:
    2020
  • 资助金额:
    $ 53.36万
  • 项目类别:
Systematic Alzheimer's disease drug repositioning (SMART) based on bioinformatics-guided phenotype screening and image-omics
基于生物信息学引导的表型筛选和图像组学的系统性阿尔茨海默病药物重新定位(SMART)
  • 批准号:
    10431823
  • 财政年份:
    2018
  • 资助金额:
    $ 53.36万
  • 项目类别:
Center for Systematic Modeling of Cancer Development
癌症发展系统建模中心
  • 批准号:
    9103432
  • 财政年份:
    2010
  • 资助金额:
    $ 53.36万
  • 项目类别:

相似海外基金

American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    8069079
  • 财政年份:
    2010
  • 资助金额:
    $ 53.36万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    6924176
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    8043578
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7155855
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7627986
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
  • 批准号:
    6709834
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
  • 批准号:
    2743624
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
  • 批准号:
    6438277
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
AMERICAN COLLEGE OF RADIOLOGY ONCOLOGIC IMAGING NETWORK
美国放射学院肿瘤成像网络
  • 批准号:
    6342136
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
American College of Radiology Imaging Network
美国放射学院影像网络
  • 批准号:
    7163173
  • 财政年份:
    1999
  • 资助金额:
    $ 53.36万
  • 项目类别:
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了