Molecular basis of effector protein export in the malaria parasite Plasmodium falciparum

疟原虫恶性疟原虫效应蛋白输出的分子基础

基本信息

  • 批准号:
    10260440
  • 负责人:
  • 金额:
    $ 40.5万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2020
  • 资助国家:
    美国
  • 起止时间:
    2020-09-10 至 2025-08-31
  • 项目状态:
    未结题

项目摘要

Project Summary Malaria is a devastating parasitic disease that affects more than 200 million people annually, resulting in nearly 500,000 deaths each year. As of 2018, the World Health Organization estimates that 3.8 billion people, roughly half the world's population, are at risk of contracting malaria, and the rise of drug-resistant parasites has created a desperate need for new anti-malarial drugs. While most intracellular pathogens export a limited repertoire of effector proteins to co-opt existing host-cell metabolic machineries, the malaria-causing parasite Plasmodium falciparum exports more than 10% of its proteome into its host, the human red blood cell, during the blood stages of its life cycle. The hundreds of proteins in the P. falciparum exportome extensively remodel host erythrocytes, creating the infrastructure needed to import nutrients, export waste, and evade the host immune system. The export of these hundreds of proteins is complicated by the fact that the malaria parasite conceals itself inside a parasitophorous vacuole (PV) derived from invagination of the host cell plasma membrane during invasion. Following secretion into the PV, proteins destined for export must be unfolded and transported across the PV membrane (PVM) into the host cell in an ATP-dependent process. The export pathway is essential for parasite survival, making members of the pathway attractive potential drug targets. The complexity and breadth of its host-cell remodeling machinery make P. falciparum a rich and exciting system for the study of host-pathogen interactions. However, many of the molecular mechanisms underlying this parasite's ability to hijack human red blood cells remain enigmatic, as much of the P. falciparum proteome has proven recalcitrant to structural and biochemical characterization using traditional recombinant approaches. The goal of the proposed work is to leverage and build upon the latest advances in single-particle cryo electron microscopy and cryo focused ion beam-enabled in situ cryo electron tomography to elucidate the molecular mechanisms underlying effector protein export in P. falciparum and to identify promising targets for structure-based design of new anti-malarial therapeutics. Three aims are proposed to accomplish these goals: 1) Establish an in vitro translocation activity assay for the Plasmodium Translocon of Exported Proteins (PTEX), a novel and essential membrane protein complex, through which all exported effector proteins must pass in order to reach the host cell cytosol. The established assay will enable biochemical characterization of the molecular mechanism of protein translocation and screening of inhibitors obtained via structure-guided design of PTEX inhibitors. 2) Structure determination of novel protein complexes of the P. falciparum exportome. 3) Direct visualization of the supramolecular effector protein export machinery in situ at the host-pathogen interface in P. falciparum-infected erythrocytes. The proposed work will provide insight into the pathogenesis of this deadly disease, identify new malarial drug targets, and enable structure-guided design of novel anti-malarial therapeutics.
项目概要 疟疾是一种毁灭性的寄生虫病,每年影响超过 2 亿人,导致近 每年有 50 万人死亡。截至 2018 年,世界卫生组织估计有 38 亿人,大约 世界上一半的人口面临感染疟疾的风险,抗药性寄生虫的增加导致 迫切需要新的抗疟疾药物。虽然大多数细胞内病原体输出有限的库 效应蛋白来选择现有的宿主细胞代谢机制,即引起疟疾的寄生虫疟原虫 在血液阶段,恶性疟原虫将超过 10% 的蛋白质组输出到其宿主——人类红细胞中 其生命周期。恶性疟原虫输出组中的数百种蛋白质广泛重塑宿主红细胞, 建立输入营养物质、输出废物和逃避宿主免疫系统所需的基础设施。这 由于疟疾寄生虫将自身隐藏在体内,因此这数百种蛋白质的输出变得复杂。 寄生液泡(PV)源自入侵过程中宿主细胞质膜的内陷。 分泌到 PV 后,用于输出的蛋白质必须展开并穿过 PV 膜(PVM)通过 ATP 依赖性过程进入宿主细胞。输出途径对于寄生虫至关重要 生存,使该途径的成员有吸引力的潜在药物靶点。其复杂性和广度 宿主细胞重塑机制使恶性疟原虫成为研究宿主病原体的丰富且令人兴奋的系统 互动。然而,这种寄生虫劫持人类红色能力的许多分子机制 血细胞仍然是个谜,因为许多恶性疟原虫蛋白质组已被证明难以适应结构和 使用传统重组方法进行生化表征。拟议工作的目标是 利用并建立在单粒子冷冻电子显微镜和冷冻聚焦离子方面的最新进展 束原位冷冻电子断层扫描阐明效应器的分子机制 恶性疟原虫中的蛋白质输出,并确定基于结构的新型抗疟疾药物设计的有希望的目标 疗法。为了实现这些目标,提出了三个目标:1)建立体外易位活动 疟原虫输出蛋白易位子 (PTEX) 的测定,这是一种新型且重要的膜蛋白 复合体,所有输出的效应蛋白必须通过该复合体才能到达宿主细胞胞浆。这 建立的检测方法将能够对蛋白质易位的分子机制进行生化表征 以及通过 PTEX 抑制剂的结构指导设计获得的抑制剂的筛选。 2) 结构测定 恶性疟原虫输出组的新型蛋白质复合物。 3)超分子效应器的直接可视化 恶性疟原虫感染的红细胞中宿主-病原体界面处的蛋白质输出机制。这 拟议的工作将深入了解这种致命疾病的发病机制,确定新的疟疾药物靶标, 并实现新型抗疟疾疗法的结构引导设计。

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Chi-Min Ho其他文献

Chi-Min Ho的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Chi-Min Ho', 18)}}的其他基金

Molecular basis of effector protein export in the malaria parasite Plasmodium falciparum
疟原虫恶性疟原虫效应蛋白输出的分子基础
  • 批准号:
    10018277
  • 财政年份:
    2020
  • 资助金额:
    $ 40.5万
  • 项目类别:

相似海外基金

RII Track-4:NSF: From the Ground Up to the Air Above Coastal Dunes: How Groundwater and Evaporation Affect the Mechanism of Wind Erosion
RII Track-4:NSF:从地面到沿海沙丘上方的空气:地下水和蒸发如何影响风蚀机制
  • 批准号:
    2327346
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
BRC-BIO: Establishing Astrangia poculata as a study system to understand how multi-partner symbiotic interactions affect pathogen response in cnidarians
BRC-BIO:建立 Astrangia poculata 作为研究系统,以了解多伙伴共生相互作用如何影响刺胞动物的病原体反应
  • 批准号:
    2312555
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
How Does Particle Material Properties Insoluble and Partially Soluble Affect Sensory Perception Of Fat based Products
不溶性和部分可溶的颗粒材料特性如何影响脂肪基产品的感官知觉
  • 批准号:
    BB/Z514391/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Training Grant
Graduating in Austerity: Do Welfare Cuts Affect the Career Path of University Students?
紧缩毕业:福利削减会影响大学生的职业道路吗?
  • 批准号:
    ES/Z502595/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Fellowship
Insecure lives and the policy disconnect: How multiple insecurities affect Levelling Up and what joined-up policy can do to help
不安全的生活和政策脱节:多种不安全因素如何影响升级以及联合政策可以提供哪些帮助
  • 批准号:
    ES/Z000149/1
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Research Grant
感性個人差指標 Affect-X の構築とビスポークAIサービスの基盤確立
建立个人敏感度指数 Affect-X 并为定制人工智能服务奠定基础
  • 批准号:
    23K24936
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Scientific Research (B)
How does metal binding affect the function of proteins targeted by a devastating pathogen of cereal crops?
金属结合如何影响谷类作物毁灭性病原体靶向的蛋白质的功能?
  • 批准号:
    2901648
  • 财政年份:
    2024
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Studentship
ERI: Developing a Trust-supporting Design Framework with Affect for Human-AI Collaboration
ERI:开发一个支持信任的设计框架,影响人类与人工智能的协作
  • 批准号:
    2301846
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Standard Grant
Investigating how double-negative T cells affect anti-leukemic and GvHD-inducing activities of conventional T cells
研究双阴性 T 细胞如何影响传统 T 细胞的抗白血病和 GvHD 诱导活性
  • 批准号:
    488039
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Operating Grants
How motor impairments due to neurodegenerative diseases affect masticatory movements
神经退行性疾病引起的运动障碍如何影响咀嚼运动
  • 批准号:
    23K16076
  • 财政年份:
    2023
  • 资助金额:
    $ 40.5万
  • 项目类别:
    Grant-in-Aid for Early-Career Scientists
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了