Ultra Low Power Computing for Next Generation Implantable Smart Cardiac Pacemakers

适用于下一代植入式智能心脏起搏器的超低功耗计算

基本信息

  • 批准号:
    10091473
  • 负责人:
  • 金额:
    $ 11.03万
  • 依托单位:
  • 依托单位国家:
    美国
  • 项目类别:
  • 财政年份:
    2018
  • 资助国家:
    美国
  • 起止时间:
    2018-02-15 至 2023-01-31
  • 项目状态:
    已结题

项目摘要

Title: Ultra Low Energy Computing for Next Generation Implantable Smart Cardiac Pacemakers Project Summary Cardiovascular diseases are one of the major causes of all human deaths. Arrhythmia related human cardiac mortality and morbidity can be reduced by the implantable artificial pacemakers that are designed to monitor the cardiac status and to regulate the beating of the heart. Not many years ago, the functionality of a pacemaker was mostly limited to monitoring signals from the heart and assisting its operation via artificial pacing when any predefined abnormality was detected. Recently, pacemaker manufacturers have started incorporating advanced features to make the pacemaker smarter and more user friendly. With low energy wireless connectivity, the pacemakers can be programmed to automatically activate alerts to the cardiologist or to the hospital via the connected smart phone or network when an emergency occurs. In the future, the wireless connectivity may also enable the cardiologist to remotely adjust the settings of the pacemaker to address the emergency or to recommend other corrective measures. Unfortunately all the added new features come at the expense of increased power consumption. Also, the wireless connectivity of the implantable devices opens up the possibility of hacking. In the case of pacemakers a hacker will be able to maliciously reprogram the pacemaker. These device security threats lead to the need for secure communication channels. The entire computational task inside a pacemaker is done by a dedicated processor. The upcoming generation of pacemakers is expected to both diversify the processor work-load and demand significantly increased computational capabilities. This research aims to develop low-energy computation methods and design methodologies that can enable future cardiac pacemakers to become a reality. A novel concept of dynamic computing is developed as a part of this research which will enable the reduction of pacemaker power consumption by detecting and eliminating repetitions of low level arithmetic/logical operations both in software and hardware implementations. By identifying overlapping computational steps and predictable data flow patterns present in most implantable cardiac pacemaker workloads, the proposed design methodologies promise enhanced performance and improvement in battery life. Applicability of the developed techniques will be investigated and tested in the context of pacemaker signal processing, security, and reliability workloads. Nearly 225,000 permanent pacemakers are implanted annually in the United States. The battery in a pacemaker can last 8-10 years and the pacemaker itself is replaced during a surgical procedure. The development of ultra-low energy computing techniques for pacemakers is expected to extend the battery life further, which in turn will reduce the frequency of the surgical procedures needed to replace the pacemaker. The reduced number of surgical procedures will also bring down the associated health care coast. The low energy computing techniques could also enable the future pacemakers to add more advanced features without sacrificing the battery life. .
下一代超低能耗计算(Ultra Low Energy Computing for Next Generation) 植入式智能心脏起搏器 项目摘要 心血管疾病是所有人类死亡的主要原因之一。心律失常相关的人心脏 可植入的人工起搏器可以降低死亡率和发病率, 心脏状态和调节心脏的跳动。几年前,一个 心脏起搏器大多局限于监测来自心脏的信号,并通过人工 当检测到任何预定义的异常时起搏。最近,起搏器制造商开始 整合了先进的功能,使起搏器更智能,更方便用户使用。低能量 无线连接,起搏器可以被编程为自动激活警报,心脏病专家或 当紧急情况发生时,通过所连接的智能手机或网络向医院报告。未来该 无线连接还可以使心脏病专家能够远程调整起搏器的设置 处理紧急情况或建议其他纠正措施。不幸的是,所有添加的新功能 以增加的功耗为代价。此外,植入式设备的无线连接性 设备开启了黑客入侵的可能性在起搏器的情况下,黑客将能够恶意地 重新设定起搏器这些设备安全威胁导致需要安全的通信通道。 起搏器内部的整个计算任务由专用处理器完成。下一代 的起搏器预计将使处理器的工作量多样化,并且需求显着增加 计算能力。本研究旨在开发低能耗的计算方法和设计 这些方法可以使未来的心脏起搏器成为现实。一种新的动态概念 计算是作为这项研究的一部分开发的,它将能够减少起搏器功率 通过检测和消除软件中低级算术/逻辑运算的重复, 和硬件实现。通过识别重叠的计算步骤和可预测的数据流 大多数植入式心脏起搏器工作负载中存在的模式, 承诺增强性能和改善电池寿命。所开发技术的适用性将 在起搏器信号处理、安全性和可靠性工作负载的背景下进行调查和测试。 在美国,每年植入近225,000个永久性起搏器。中的电池 起搏器可以持续8-10年,并且起搏器本身在外科手术期间被更换。的 用于起搏器的超低能量计算技术的发展有望延长电池寿命 这又将减少更换起搏器所需的外科手术的频率。 手术次数的减少也将降低相关的医疗费用。低 能量计算技术还可以使未来的起搏器增加更先进的功能, 牺牲电池寿命。 .

项目成果

期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

数据更新时间:{{ journalArticles.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ monograph.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ sciAawards.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ conferencePapers.updateTime }}

{{ item.title }}
  • 作者:
    {{ item.author }}

数据更新时间:{{ patent.updateTime }}

Eugene B John其他文献

Eugene B John的其他文献

{{ item.title }}
{{ item.translation_title }}
  • DOI:
    {{ item.doi }}
  • 发表时间:
    {{ item.publish_year }}
  • 期刊:
  • 影响因子:
    {{ item.factor }}
  • 作者:
    {{ item.authors }}
  • 通讯作者:
    {{ item.author }}

{{ truncateString('Eugene B John', 18)}}的其他基金

Ultra Low Power Integrated Circuits and Systems for Cardiac Pacemakers
用于心脏起搏器的超低功耗集成电路和系统
  • 批准号:
    8705539
  • 财政年份:
    2012
  • 资助金额:
    $ 11.03万
  • 项目类别:
Ultra Low Power Integrated Circuits and Systems for Cardiac Pacemakers
用于心脏起搏器的超低功耗集成电路和系统
  • 批准号:
    8268207
  • 财政年份:
    2012
  • 资助金额:
    $ 11.03万
  • 项目类别:
Ultra Low Power Integrated Circuits and Systems for Cardiac Pacemakers
用于心脏起搏器的超低功耗集成电路和系统
  • 批准号:
    8514643
  • 财政年份:
    2012
  • 资助金额:
    $ 11.03万
  • 项目类别:
Ultra Low Power Integrated Circuits and Systems for Cardiac Pacemakers
用于心脏起搏器的超低功耗集成电路和系统
  • 批准号:
    8897386
  • 财政年份:
    2012
  • 资助金额:
    $ 11.03万
  • 项目类别:

相似海外基金

CAREER: Efficient Algorithms for Modern Computer Architecture
职业:现代计算机架构的高效算法
  • 批准号:
    2339310
  • 财政年份:
    2024
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Continuing Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221742
  • 财政年份:
    2022
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Standard Grant
Collaborative Research: SHF: Small: Artificial Intelligence of Things (AIoT): Theory, Architecture, and Algorithms
合作研究:SHF:小型:物联网人工智能 (AIoT):理论、架构和算法
  • 批准号:
    2221741
  • 财政年份:
    2022
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2020
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Collaborative Research and Development Grants
OAC Core: Small: Architecture and Network-aware Partitioning Algorithms for Scalable PDE Solvers
OAC 核心:小型:可扩展 PDE 求解器的架构和网络感知分区算法
  • 批准号:
    2008772
  • 财政年份:
    2020
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Standard Grant
Algorithms and Architecture for Super Terabit Flexible Multicarrier Coherent Optical Transmission
超太比特灵活多载波相干光传输的算法和架构
  • 批准号:
    533529-2018
  • 财政年份:
    2019
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Collaborative Research and Development Grants
Visualization of FPGA CAD Algorithms and Target Architecture
FPGA CAD 算法和目标架构的可视化
  • 批准号:
    541812-2019
  • 财政年份:
    2019
  • 资助金额:
    $ 11.03万
  • 项目类别:
    University Undergraduate Student Research Awards
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759836
  • 财政年份:
    2018
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759796
  • 财政年份:
    2018
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Standard Grant
Collaborative Research: ABI Innovation: Algorithms for recovering root architecture from 3D imaging
合作研究:ABI 创新:从 3D 成像恢复根结构的算法
  • 批准号:
    1759807
  • 财政年份:
    2018
  • 资助金额:
    $ 11.03万
  • 项目类别:
    Standard Grant
{{ showInfoDetail.title }}

作者:{{ showInfoDetail.author }}

知道了