Visual perception as a window onto prediction anomalies in schizophrenia
视觉感知作为精神分裂症预测异常的窗口
基本信息
- 批准号:10558745
- 负责人:
- 金额:$ 43.93万
- 依托单位:
- 依托单位国家:美国
- 项目类别:
- 财政年份:2021
- 资助国家:美国
- 起止时间:2021-04-01 至 2026-01-31
- 项目状态:未结题
- 来源:
- 关键词:AnimalsBayesian AnalysisBayesian ModelingBehaviorBehavioral ParadigmBeliefBiologicalBrainChronicChronic SchizophreniaClinicalCognitiveComplexComputer ModelsConsciousDataDelusionsDependenceDetectionDistressEnvironmentFaceFunctional Magnetic Resonance ImagingFunctional disorderGoalsHallucinationsHumanImageIndividualLinkLiteratureMeasuresMethodologyModelingMotivationNatureNeuronsNeurophysiology - biologic functionOnset of illnessPatientsPatternPerceptionPerceptual disturbancePharmacologyPopulationProcessPropertyPsyche structurePsychotic DisordersReportingSchizophreniaSensorySeveritiesStatistical ModelsStructureSymptomsSynapsesSystemTestingUpdateVisionVisualVisual CortexVisual PerceptionVisual SystemVolatilizationWorkclinically relevantclinically significantdisorder riskeffective therapyexperienceexperimental studyfunctional outcomesindexinginsightneuralneuroadaptationneuroimagingneuromechanismneurophysiologyneurotransmissionphenomenological modelspsychotic-like experiencesresponseschizophrenia spectrum disordersensory inputtheoriestoolvisual adaptationvisual processingvisual stimulus
项目摘要
Abstract
What are the aberrant brain processes that lead to symptoms of schizophrenia—to the distressing and
disabling hallucinations, delusions, disorganization, and loss of motivation? Answering this question is central
to developing targeted and effective treatments. Prominent mechanistic accounts of schizophrenia hinge on
the notion of the brain as a “prediction machine” that maintains and updates a mental model of the probabilistic
structure of the environment, which it uses in concert with sensory input to make sense of the world.
Schizophrenia has been associated with an abnormality in this interpretative process, leading to abnormal
perceptions, beliefs, and behaviors. What is currently lacking, however, is an empirical basis for delineating the
specific nature of prediction abnormalities in schizophrenia, at the level of both behavior and brain.
The general aim of the current project is to understand how visual perception is influenced by
experience-based predictions in the schizophrenia. The visual system is a uniquely suited system for
understanding prediction abnormalities in clinical populations for several reasons. First, robust behavioral
paradigms can quantify the influence of predictions on visual perception. Second, parallel neurophysiology and
neuroimaging work provides a basis for interpretation at the level of neuronal populations. Understanding these
abnormalities in vision, then, may provide a scalable framework for understanding symptoms more generally.
Furthermore, visual distortions are observed in schizophrenia before illness onset, and they relate to important
clinical factors. Understanding prediction in the visual system can help explain specific clinical phenomenology.
The current project proposes to investigate the influence of prior experience on visual processing by
measuring visual aftereffects and their neural concomitants. Aftereffects are illusory perception of the
“opposite” that arises after prolonged viewing of a image. Characterizing visual aftereffects in the
schizophrenia spectrum can provide important insights into the computational and biological underpinnings of
abnormal prediction. The substantial existing literature on the neural and computational origins of aftereffects
means that different aftereffects can reveal at what level of the sensory hierarchy, and in which specific
component processes, prediction abnormalities emerge. Specific study goals are to 1) characterize visual
aftereffects in the schizophrenia spectrum; 2) determine whether they are present across illness stages and in
individuals at-risk for the disorder; 3) evaluate the clinical relevance of altered visual aftereffects; and 4) to
measure neuroimaging concomitants of altered aftereffects and link them to computational model components.
Visual aftereffects can provide a tool with which to empirically test a canonical computational mechanism as
the basis for both altered visual experience and symptom genesis generally, namely an inappropriate use of
prior experience in generating the contents of consciousness.
摘要
什么是异常的大脑过程,导致精神分裂症的症状-痛苦和
使人丧失能力的幻觉,妄想,混乱,和失去动力?探讨这个问题是核心
发展出有针对性的有效治疗方法精神分裂症的主要机制解释
大脑作为“预测机器”的概念,它维护和更新概率的心理模型,
环境的结构,它与感官输入一起使用,使世界有意义。
精神分裂症与这种解释过程的异常有关,导致异常
感知、信念和行为。然而,目前缺乏的是一个经验基础,
精神分裂症在行为和大脑水平上预测异常的特定性质。
当前项目的总体目标是了解视觉感知如何受到
基于经验的预测视觉系统是一个独特的适合系统,
了解临床人群的预测异常有几个原因。第一,稳健的行为
范例可以量化预测对视觉感知的影响。第二,平行神经生理学和
神经成像工作为在神经元群体水平上的解释提供了基础。了解这些
因此,视觉异常可能为更普遍地理解症状提供一个可扩展的框架。
此外,在精神分裂症发病前观察到视觉扭曲,它们与重要的
临床因素。理解视觉系统中的预测可以帮助解释特定的临床现象学。
目前的项目建议调查的影响,先前的经验对视觉处理,
测量视觉后遗症及其神经伴随物。后效是一种错觉,
在长时间观看图像后出现的“相反”。视觉后效的特征
精神分裂症谱可以提供重要的见解的计算和生物学基础,
异常预测关于后效的神经和计算起源的大量现有文献
这意味着不同的后效可以揭示在感觉层次的哪个层次,以及在哪个特定层次。
组件过程中,预测异常出现。具体的研究目标是:1)表征视觉
精神分裂症谱中的后遗症; 2)确定它们是否存在于疾病的各个阶段,
3)评估视觉后遗症改变的临床相关性;以及4)
测量改变的后遗症的神经成像伴随物,并将它们与计算模型组件联系起来。
视觉后效可以提供一种工具,用它来经验性地测试一种规范的计算机制,
一般来说,改变视觉体验和症状发生的基础,即不适当地使用
产生意识内容的先验经验。
项目成果
期刊论文数量(0)
专著数量(0)
科研奖励数量(0)
会议论文数量(0)
专利数量(0)
数据更新时间:{{ journalArticles.updateTime }}
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
数据更新时间:{{ journalArticles.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ monograph.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ sciAawards.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ conferencePapers.updateTime }}
{{ item.title }}
- 作者:
{{ item.author }}
数据更新时间:{{ patent.updateTime }}
Katharine Natasha Thakkar其他文献
Katharine Natasha Thakkar的其他文献
{{
item.title }}
{{ item.translation_title }}
- DOI:
{{ item.doi }} - 发表时间:
{{ item.publish_year }} - 期刊:
- 影响因子:{{ item.factor }}
- 作者:
{{ item.authors }} - 通讯作者:
{{ item.author }}
{{ truncateString('Katharine Natasha Thakkar', 18)}}的其他基金
Visual perception as a window onto prediction anomalies in schizophrenia
视觉感知作为精神分裂症预测异常的窗口
- 批准号:
10376280 - 财政年份:2021
- 资助金额:
$ 43.93万 - 项目类别:
Uncovering pathophysiological mechanisms of psychosis using the oculomotor system.
使用动眼神经系统揭示精神病的病理生理机制。
- 批准号:
9764488 - 财政年份:2017
- 资助金额:
$ 43.93万 - 项目类别:
Uncovering pathophysiological mechanisms of psychosis using the oculomotor system.
使用动眼神经系统揭示精神病的病理生理机制。
- 批准号:
9976587 - 财政年份:2017
- 资助金额:
$ 43.93万 - 项目类别:
Control of action in schizophrenia: Countermanding saccades and ERP
精神分裂症的行动控制:对抗眼跳和 ERP
- 批准号:
7728259 - 财政年份:2009
- 资助金额:
$ 43.93万 - 项目类别:
Control of action in schizophrenia: Countermanding saccades and ERP
精神分裂症的行动控制:对抗眼跳和 ERP
- 批准号:
7615305 - 财政年份:2009
- 资助金额:
$ 43.93万 - 项目类别:
Control of action in schizophrenia: Countermanding saccades and ERP
精神分裂症的行动控制:对抗眼跳和 ERP
- 批准号:
7999267 - 财政年份:2009
- 资助金额:
$ 43.93万 - 项目类别:
相似海外基金
Scalable Bayesian regression: Analytical and numerical tools for efficient Bayesian analysis in the large data regime
可扩展贝叶斯回归:在大数据领域进行高效贝叶斯分析的分析和数值工具
- 批准号:
2311354 - 财政年份:2023
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210282 - 财政年份:2022
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Bayesian analysis of generative models of sequence insertion events in HIV-1 envelope glycoproteins
HIV-1 包膜糖蛋白序列插入事件生成模型的贝叶斯分析
- 批准号:
574483-2022 - 财政年份:2022
- 资助金额:
$ 43.93万 - 项目类别:
University Undergraduate Student Research Awards
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210280 - 财政年份:2022
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
World Meeting of the International Society for Bayesian Analysis 2022
2022 年国际贝叶斯分析学会世界会议
- 批准号:
2206934 - 财政年份:2022
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Collaborative Research: Novel modeling and Bayesian analysis of high-dimensional time series
合作研究:高维时间序列的新颖建模和贝叶斯分析
- 批准号:
2210281 - 财政年份:2022
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Default Bayesian Analysis of Spatial Data
空间数据的默认贝叶斯分析
- 批准号:
2113375 - 财政年份:2021
- 资助金额:
$ 43.93万 - 项目类别:
Standard Grant
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10701881 - 财政年份:2021
- 资助金额:
$ 43.93万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10298072 - 财政年份:2021
- 资助金额:
$ 43.93万 - 项目类别:
Hierarchical Bayesian Analysis of Retinotopic Maps of the Human Visual Cortex with Conformal Geometry
具有共形几何的人类视觉皮层视网膜专题图的分层贝叶斯分析
- 批准号:
10473754 - 财政年份:2021
- 资助金额:
$ 43.93万 - 项目类别: